Lemma is an Electromagnetics API
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

receiverpoints.h 9.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. @version $Id: receiverpoints.h 199 2014-12-29 19:25:20Z tirons $
  10. **/
  11. #ifndef __RECEIVERPOINTS_H
  12. #define __RECEIVERPOINTS_H
  13. #ifdef LEMMAUSEVTK
  14. #include "vtkPointData.h"
  15. #include "vtkFieldData.h"
  16. #include "vtkGlyph3D.h"
  17. #include "vtkArrowSource.h"
  18. #include "vtkActor.h"
  19. #include "vtkPolyDataMapper.h"
  20. #include "vtkPoints.h"
  21. #include "vtkPolyData.h"
  22. #include "vtkDoubleArray.h"
  23. #include "vtkDataObject.h"
  24. #endif
  25. #include "LemmaObject.h"
  26. #include "dipolesource.h"
  27. #ifdef HAVE_YAMLCPP
  28. #include "yaml-cpp/yaml.h"
  29. #endif
  30. namespace Lemma {
  31. // =======================================================================
  32. // Class: ReceiverPoints
  33. /// \brief Points in the subsurface to make EM calculations,
  34. /// more general than the grids.
  35. // =======================================================================
  36. class ReceiverPoints : public LemmaObject {
  37. public:
  38. // ==================== FRIENDS ===========================
  39. /** Stream operator printing out information about this class.
  40. */
  41. friend std::ostream &operator<<(std::ostream &stream,
  42. const ReceiverPoints &ob);
  43. friend class EMEarth1D;
  44. friend class DipoleSource;
  45. // ==================== LIFECYCLE ===========================
  46. /**
  47. * Returns pointer to new DipoleSource. Location is
  48. * initialized to (0,0,0) type and polarization are
  49. * initialized to nonworking values that will throw
  50. * exceptions if used.
  51. */
  52. static ReceiverPoints* New();
  53. /**
  54. * @copybrief LemmaObject::Delete()
  55. * @copydetails LemmaObject::Delete()
  56. */
  57. void Delete();
  58. // ==================== OPERATORS ===========================
  59. // ==================== OPERATIONS ===========================
  60. // ==================== ACCESS ===========================
  61. /// Sets the number of receivers
  62. virtual void SetNumberOfReceivers(const int &nrec);
  63. /// Returns the location of a single receiver as an Eigen Vector
  64. void SetLocation(const int& nrec, const Vector3r& loc);
  65. /// Returns the location of a single receiver as an Eigen Vector
  66. void SetLocation(const int& nrec, const Real& xp, const Real& yp,
  67. const Real& zp);
  68. // ==================== INQUIRY ===========================
  69. /// Returns the number of receiverpoints.
  70. int GetNumberOfReceivers();
  71. /// Returns all the receiver locations as a 3 X matrix
  72. Vector3Xr GetLocations();
  73. /// Returns all the receiver locations as a general matrix, useful for python wrapper
  74. MatrixXr GetLocationsMat();
  75. /// Returns the E field for all locations
  76. /// nfreq is the freqency desired
  77. Vector3Xcr GetEfield(const int &nfreq);
  78. /// Returns the E field for all locations
  79. /// nfreq is the freqency desired, cast to general dynamic matrix, for python interoperability
  80. MatrixXcr GetEfieldMat(const int &nfreq);
  81. /// Returns the H field for all locations
  82. /// nfreq is the freqency desired, cast to general dynamic matrix, for python interoperability
  83. MatrixXcr GetHfieldMat(const int &nfreq);
  84. /// Returns the H field for all locations
  85. /// nfreq is the freqency desired
  86. Vector3Xcr GetHfield(const int &nfreq);
  87. /// Returns all of the computed H fields. Every frequency
  88. std::vector<Vector3Xcr> GetHfield( );
  89. /// Returns all of the computed E fields. Every frequency
  90. std::vector<Vector3Xcr> GetEfield( );
  91. /// Returns the E field of a single receiver as an Eigen Vector
  92. /// nfreq is the freqency desired
  93. Vector3cr GetEfield(const int &nfreq, const int& loc);
  94. /// Returns the H field of a single receiver as an Eigen Vector
  95. /// nfreq is the freqency desired
  96. Vector3cr GetHfield(const int &nfreq, const int& loc);
  97. /// Returns the B field of a single receiver as an Eigen Vector
  98. /// nfreq is the freqency desired
  99. Vector3cr GetBfield(const int &nfreq, const int& loc);
  100. #ifdef LEMMAUSEVTK
  101. /// Returns vtk Glyph actor that can be placed into scenes
  102. vtkActor* GetVtkGlyphActor(const FIELDTYPE &ftype,
  103. const Real& clip, const Real &scale,
  104. const int &nfreq);
  105. /// Returns a vtk Data Object that can easily be plotted
  106. vtkDataObject * GetVtkDataObject(const FIELDTYPE &ftype,
  107. const int& nbin,
  108. const int& start, const int& end,
  109. const FIELDCOMPONENT& fcomp,
  110. const SPATIALCOORDINANT& scord);
  111. /// Returns a vtk Data Object that can easily be plotted
  112. vtkDataObject * GetVtkDataObjectFreq(const FIELDTYPE &ftype,
  113. const int& nrec,
  114. const int& fstart, const int& fend,
  115. const FIELDCOMPONENT& fcomp,
  116. const VectorXr& Freqs);
  117. #endif
  118. /// Returns the location of a single receiver as an Eigen Vector
  119. Vector3r GetLocation(const int& loc);
  120. /// Returns the x component of the location
  121. Real GetLocationX(const int& loc);
  122. /// Returns the y component of the location
  123. Real GetLocationY(const int& loc);
  124. /// Returns the z component of the location
  125. Real GetLocationZ(const int& loc);
  126. /// Resets fields
  127. void ClearFields();
  128. /// Sets the mask variable to true for this point.
  129. void MaskPoint(const int& i);
  130. /// Turns the mask off for this point.
  131. void UnMaskPoint(const int& i);
  132. /// Removes making on all points
  133. void UnMaskAllPoints();
  134. /// Returns the mask for this point
  135. int GetMask(const int& i);
  136. #ifdef HAVE_YAMLCPP
  137. /**
  138. * Uses YAML to serialize this object.
  139. * @return a YAML::Node
  140. */
  141. YAML::Node Serialize() const;
  142. /**
  143. * Constructs an object from a YAML::Node.
  144. */
  145. static ReceiverPoints* DeSerialize(const YAML::Node& node);
  146. #endif
  147. protected:
  148. // ==================== LIFECYCLE ===========================
  149. /// Default protected constructor.
  150. ReceiverPoints (const std::string& name);
  151. #ifdef HAVE_YAMLCPP
  152. /// Default protected constructor.
  153. ReceiverPoints (const YAML::Node& node);
  154. #endif
  155. /// Default protected constructor.
  156. ~ReceiverPoints ();
  157. /**
  158. * @copybrief LemmaObject::Release()
  159. * @copydetails LemmaObject::Release()
  160. */
  161. void Release();
  162. // ==================== OPERATIONS ===========================
  163. /// Sets the number of H bins. These bins are often frequencies.
  164. void SetNumberOfBinsH(const int& nbins);
  165. /// Sets the number of E bins. These bins are often frequencies.
  166. void SetNumberOfBinsE(const int& nbins);
  167. /** Internal function that resizes the EField data structure */
  168. void ResizeEField();
  169. /** Internal function that resizes the HField data structure */
  170. void ResizeHField();
  171. /// Sets the value of the E field
  172. void SetEfield(const int &nfreq, const int& loc,
  173. const Complex &ex, const Complex &ey, const Complex &ez);
  174. /// Sets the value of the H field
  175. void SetHfield(const int &nfreq, const int& loc,
  176. const Complex &hx, const Complex &hy, const Complex &hz);
  177. /// Appends the value of the E field. This method is not
  178. /// thread safe.
  179. void AppendEfield(const int&nfreq, const int& loc,
  180. const Complex &ex, const Complex &ey, const Complex &ez);
  181. /// Appends the value of the H field. This method is not
  182. /// thread safe.
  183. void AppendHfield(const int &nfreq, const int& loc,
  184. const Complex &hx, const Complex &hy, const Complex &hz);
  185. // ==================== DATA MEMBERS ===========================
  186. /// Number of receivers
  187. int NumberOfReceivers;
  188. /// Number of fields
  189. int NumberOfBinsE;
  190. /// Number of fields
  191. int NumberOfBinsH;
  192. /// Used to mask this point so no computation is made at
  193. /// this point.
  194. VectorXi Mask;
  195. /// Locations of receivers
  196. Vector3Xr Locations;
  197. private:
  198. // NOTE, these are not serialized in output!
  199. /// Electric field at receiver locations
  200. std::vector<Vector3Xcr> Efield;
  201. /// H field at receiver locations
  202. std::vector<Vector3Xcr> Hfield;
  203. }; // ----- end of class ReceiverPoints -----
  204. }
  205. #endif // __RECEIVERPOINTS