123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134 |
- /* This file is part of Lemma, a geophysical modelling and inversion API */
-
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
-
- /**
- @file
- @author Trevor Irons
- @date 01/02/2010
- @version $Id: hankeltransformgaussianquadrature.cpp 200 2014-12-29 21:11:55Z tirons $
- **/
-
- // Description: Port of Alan Chave's gaussian quadrature algorithm, which
- // is public domain, code listed in published article:
- // Chave, A. D., 1983, Numerical integration of related Hankel transforms by
- // quadrature and continued fraction expansion: Geophysics, 48
- // 1671--1686 doi: 10.1190/1.1441448
-
- #include "hankeltransformgaussianquadrature.h"
-
- namespace Lemma{
-
- std::ostream &operator<<(std::ostream &stream,
- const HankelTransformGaussianQuadrature &ob) {
-
- stream << *(HankelTransform*)(&ob);
- return stream;
- }
-
- // Initialise static members
- const VectorXr HankelTransformGaussianQuadrature::WT =
- (VectorXr(254) << // (WT(I),I=1,20)
- 0.55555555555555555556e+00,0.88888888888888888889e+00,
- 0.26848808986833344073e+00,0.10465622602646726519e+00,
- 0.40139741477596222291e+00,0.45091653865847414235e+00,
- 0.13441525524378422036e+00,0.51603282997079739697e-01,
- 0.20062852937698902103e+00,0.17001719629940260339e-01,
- 0.92927195315124537686e-01,0.17151190913639138079e+00,
- 0.21915685840158749640e+00,0.22551049979820668739e+00,
- 0.67207754295990703540e-01,0.25807598096176653565e-01,
- 0.10031427861179557877e+00,0.84345657393211062463e-02,
- 0.46462893261757986541e-01,0.85755920049990351154e-01,
- // (WT(I),I=21,40)
- 0.10957842105592463824e+00,0.25447807915618744154e-02,
- 0.16446049854387810934e-01,0.35957103307129322097e-01,
- 0.56979509494123357412e-01,0.76879620499003531043e-01,
- 0.93627109981264473617e-01,0.10566989358023480974e+00,
- 0.11195687302095345688e+00,0.11275525672076869161e+00,
- 0.33603877148207730542e-01,0.12903800100351265626e-01,
- 0.50157139305899537414e-01,0.42176304415588548391e-02,
- 0.23231446639910269443e-01,0.42877960025007734493e-01,
- 0.54789210527962865032e-01,0.12651565562300680114e-02,
- 0.82230079572359296693e-02,0.17978551568128270333e-01,
- // (WT(I),I=41,60)
- 0.28489754745833548613e-01,0.38439810249455532039e-01,
- 0.46813554990628012403e-01,0.52834946790116519862e-01,
- 0.55978436510476319408e-01,0.36322148184553065969e-03,
- 0.25790497946856882724e-02,0.61155068221172463397e-02,
- 0.10498246909621321898e-01,0.15406750466559497802e-01,
- 0.20594233915912711149e-01,0.25869679327214746911e-01,
- 0.31073551111687964880e-01,0.36064432780782572640e-01,
- 0.40715510116944318934e-01,0.44914531653632197414e-01,
- 0.48564330406673198716e-01,0.51583253952048458777e-01,
- 0.53905499335266063927e-01,0.55481404356559363988e-01,
- // (WT(I),I=61,80)
- 0.56277699831254301273e-01,0.56377628360384717388e-01,
- 0.16801938574103865271e-01,0.64519000501757369228e-02,
- 0.25078569652949768707e-01,0.21088152457266328793e-02,
- 0.11615723319955134727e-01,0.21438980012503867246e-01,
- 0.27394605263981432516e-01,0.63260731936263354422e-03,
- 0.41115039786546930472e-02,0.89892757840641357233e-02,
- 0.14244877372916774306e-01,0.19219905124727766019e-01,
- 0.23406777495314006201e-01,0.26417473395058259931e-01,
- 0.27989218255238159704e-01,0.18073956444538835782e-03,
- 0.12895240826104173921e-02,0.30577534101755311361e-02,
- // (WT(I),I=81,100)
- 0.52491234548088591251e-02,0.77033752332797418482e-02,
- 0.10297116957956355524e-01,0.12934839663607373455e-01,
- 0.15536775555843982440e-01,0.18032216390391286320e-01,
- 0.20357755058472159467e-01,0.22457265826816098707e-01,
- 0.24282165203336599358e-01,0.25791626976024229388e-01,
- 0.26952749667633031963e-01,0.27740702178279681994e-01,
- 0.28138849915627150636e-01,0.50536095207862517625e-04,
- 0.37774664632698466027e-03,0.93836984854238150079e-03,
- 0.16811428654214699063e-02,0.25687649437940203731e-02,
- 0.35728927835172996494e-02,0.46710503721143217474e-02,
- // (WT(I),I=101,120)
- 0.58434498758356395076e-02,0.70724899954335554680e-02,
- 0.83428387539681577056e-02,0.96411777297025366953e-02,
- 0.10955733387837901648e-01,0.12275830560082770087e-01,
- 0.13591571009765546790e-01,0.14893641664815182035e-01,
- 0.16173218729577719942e-01,0.17421930159464173747e-01,
- 0.18631848256138790186e-01,0.19795495048097499488e-01,
- 0.20905851445812023852e-01,0.21956366305317824939e-01,
- 0.22940964229387748761e-01,0.23854052106038540080e-01,
- 0.24690524744487676909e-01,0.25445769965464765813e-01,
- 0.26115673376706097680e-01,0.26696622927450359906e-01,
- // (WT(I),I=121,140)
- 0.27185513229624791819e-01,0.27579749566481873035e-01,
- 0.27877251476613701609e-01,0.28076455793817246607e-01,
- 0.28176319033016602131e-01,0.28188814180192358694e-01,
- 0.84009692870519326354e-02,0.32259500250878684614e-02,
- 0.12539284826474884353e-01,0.10544076228633167722e-02,
- 0.58078616599775673635e-02,0.10719490006251933623e-01,
- 0.13697302631990716258e-01,0.31630366082226447689e-03,
- 0.20557519893273465236e-02,0.44946378920320678616e-02,
- 0.71224386864583871532e-02,0.96099525623638830097e-02,
- 0.11703388747657003101e-01,0.13208736697529129966e-01,
- // (WT(I),I=141,160)
- 0.13994609127619079852e-01,0.90372734658751149261e-04,
- 0.64476204130572477933e-03,0.15288767050877655684e-02,
- 0.26245617274044295626e-02,0.38516876166398709241e-02,
- 0.51485584789781777618e-02,0.64674198318036867274e-02,
- 0.77683877779219912200e-02,0.90161081951956431600e-02,
- 0.10178877529236079733e-01,0.11228632913408049354e-01,
- 0.12141082601668299679e-01,0.12895813488012114694e-01,
- 0.13476374833816515982e-01,0.13870351089139840997e-01,
- 0.14069424957813575318e-01,0.25157870384280661489e-04,
- 0.18887326450650491366e-03,0.46918492424785040975e-03,
- // (WT(I),I=161,180)
- 0.84057143271072246365e-03,0.12843824718970101768e-02,
- 0.17864463917586498247e-02,0.23355251860571608737e-02,
- 0.29217249379178197538e-02,0.35362449977167777340e-02,
- 0.41714193769840788528e-02,0.48205888648512683476e-02,
- 0.54778666939189508240e-02,0.61379152800413850435e-02,
- 0.67957855048827733948e-02,0.74468208324075910174e-02,
- 0.80866093647888599710e-02,0.87109650797320868736e-02,
- 0.93159241280693950932e-02,0.98977475240487497440e-02,
- 0.10452925722906011926e-01,0.10978183152658912470e-01,
- 0.11470482114693874380e-01,0.11927026053019270040e-01,
- // (WT(I),I=181,200)
- 0.12345262372243838455e-01,0.12722884982732382906e-01,
- 0.13057836688353048840e-01,0.13348311463725179953e-01,
- 0.13592756614812395910e-01,0.13789874783240936517e-01,
- 0.13938625738306850804e-01,0.14038227896908623303e-01,
- 0.14088159516508301065e-01,0.69379364324108267170e-05,
- 0.53275293669780613125e-04,0.13575491094922871973e-03,
- 0.24921240048299729402e-03,0.38974528447328229322e-03,
- 0.55429531493037471492e-03,0.74028280424450333046e-03,
- 0.94536151685852538246e-03,0.11674841174299594077e-02,
- 0.14049079956551446427e-02,0.16561127281544526052e-02,
- // (WT(I),I=201,220)
- 0.19197129710138724125e-02,0.21944069253638388388e-02,
- 0.24789582266575679307e-02,0.27721957645934509940e-02,
- 0.30730184347025783234e-02,0.33803979910869203823e-02,
- 0.36933779170256508183e-02,0.40110687240750233989e-02,
- 0.43326409680929828545e-02,0.46573172997568547773e-02,
- 0.49843645647655386012e-02,0.53130866051870565663e-02,
- 0.56428181013844441585e-02,0.59729195655081658049e-02,
- 0.63027734490857587172e-02,0.66317812429018878941e-02,
- 0.69593614093904229394e-02,0.72849479805538070639e-02,
- 0.76079896657190565832e-02,0.79279493342948491103e-02,
- // (WT(I),I=221,240)
- 0.82443037630328680306e-02,0.85565435613076896192e-02,
- 0.88641732094824942641e-02,0.91667111635607884067e-02,
- 0.94636899938300652943e-02,0.97546565363174114611e-02,
- 0.10039172044056840798e-01,0.10316812330947621682e-01,
- 0.10587167904885197931e-01,0.10849844089337314099e-01,
- 0.11104461134006926537e-01,0.11350654315980596602e-01,
- 0.11588074033043952568e-01,0.11816385890830235763e-01,
- 0.12035270785279562630e-01,0.12244424981611985899e-01,
- 0.12443560190714035263e-01,0.12632403643542078765e-01,
- 0.12810698163877361967e-01,0.12978202239537399286e-01,
- // (WT(I),I=241,254)
- 0.13134690091960152836e-01,0.13279951743930530650e-01,
- 0.13413793085110098513e-01,0.13536035934956213614e-01,
- 0.13646518102571291428e-01,0.13745093443001896632e-01,
- 0.13831631909506428676e-01,0.13906019601325461264e-01,
- 0.13968158806516938516e-01,0.14017968039456608810e-01,
- 0.14055382072649964277e-01,0.14080351962553661325e-01,
- 0.14092845069160408355e-01,0.14094407090096179347e-01).finished();
-
- const VectorXr HankelTransformGaussianQuadrature::WA =
- (VectorXr(127) << // (WT(I),I=1,20)
- // (WA(I),I=1,20)
- 0.77459666924148337704e+00,0.96049126870802028342e+00,
- 0.43424374934680255800e+00,0.99383196321275502221e+00,
- 0.88845923287225699889e+00,0.62110294673722640294e+00,
- 0.22338668642896688163e+00,0.99909812496766759766e+00,
- 0.98153114955374010687e+00,0.92965485742974005667e+00,
- 0.83672593816886873550e+00,0.70249620649152707861e+00,
- 0.53131974364437562397e+00,0.33113539325797683309e+00,
- 0.11248894313318662575e+00,0.99987288812035761194e+00,
- 0.99720625937222195908e+00,0.98868475754742947994e+00,
- 0.97218287474858179658e+00,0.94634285837340290515e+00,
- // (WA(I),I=21,40)
- 0.91037115695700429250e+00,0.86390793819369047715e+00,
- 0.80694053195021761186e+00,0.73975604435269475868e+00,
- 0.66290966002478059546e+00,0.57719571005204581484e+00,
- 0.48361802694584102756e+00,0.38335932419873034692e+00,
- 0.27774982202182431507e+00,0.16823525155220746498e+00,
- 0.56344313046592789972e-01,0.99998243035489159858e+00,
- 0.99959879967191068325e+00,0.99831663531840739253e+00,
- 0.99572410469840718851e+00,0.99149572117810613240e+00,
- 0.98537149959852037111e+00,0.97714151463970571416e+00,
- 0.96663785155841656709e+00,0.95373000642576113641e+00,
- // (WA(I),I=41,60)
- 0.93832039777959288365e+00,0.92034002547001242073e+00,
- 0.89974489977694003664e+00,0.87651341448470526974e+00,
- 0.85064449476835027976e+00,0.82215625436498040737e+00,
- 0.79108493379984836143e+00,0.75748396638051363793e+00,
- 0.72142308537009891548e+00,0.68298743109107922809e+00,
- 0.64227664250975951377e+00,0.59940393024224289297e+00,
- 0.55449513263193254887e+00,0.50768775753371660215e+00,
- 0.45913001198983233287e+00,0.40897982122988867241e+00,
- 0.35740383783153215238e+00,0.30457644155671404334e+00,
- 0.25067873030348317661e+00,0.19589750271110015392e+00,
- // (WA(I),I=61,80)
- 0.14042423315256017459e+00,0.84454040083710883710e-01,
- 0.28184648949745694339e-01,0.99999759637974846462e+00,
- 0.99994399620705437576e+00,0.99976049092443204733e+00,
- 0.99938033802502358193e+00,0.99874561446809511470e+00,
- 0.99780535449595727456e+00,0.99651414591489027385e+00,
- 0.99483150280062100052e+00,0.99272134428278861533e+00,
- 0.99015137040077015918e+00,0.98709252795403406719e+00,
- 0.98351865757863272876e+00,0.97940628167086268381e+00,
- 0.97473445975240266776e+00,0.96948465950245923177e+00,
- 0.96364062156981213252e+00,0.95718821610986096274e+00,
- // (WA(I),I=81,100)
- 0.95011529752129487656e+00,0.94241156519108305981e+00,
- 0.93406843615772578800e+00,0.92507893290707565236e+00,
- 0.91543758715576504064e+00,0.90514035881326159519e+00,
- 0.89418456833555902286e+00,0.88256884024734190684e+00,
- 0.87029305554811390585e+00,0.85735831088623215653e+00,
- 0.84376688267270860104e+00,0.82952219463740140018e+00,
- 0.81462878765513741344e+00,0.79909229096084140180e+00,
- 0.78291939411828301639e+00,0.76611781930376009072e+00,
- 0.74869629361693660282e+00,0.73066452124218126133e+00,
- 0.71203315536225203459e+00,0.69281376977911470289e+00,
- // (WA(I),I=101,120)
- 0.67301883023041847920e+00,0.65266166541001749610e+00,
- 0.63175643771119423041e+00,0.61031811371518640016e+00,
- 0.58836243444766254143e+00,0.56590588542365442262e+00,
- 0.54296566649831149049e+00,0.51955966153745702199e+00,
- 0.49570640791876146017e+00,0.47142506587165887693e+00,
- 0.44673538766202847374e+00,0.42165768662616330006e+00,
- 0.39621280605761593918e+00,0.37042208795007823014e+00,
- 0.34430734159943802278e+00,0.31789081206847668318e+00,
- 0.29119514851824668196e+00,0.26424337241092676194e+00,
- 0.23705884558982972721e+00,0.20966523824318119477e+00,
- // (WA(I),I=121,127)
- 0.18208649675925219825e+00,0.15434681148137810869e+00,
- 0.12647058437230196685e+00,0.98482396598119202090e-01,
- 0.70406976042855179063e-01,0.42269164765363603212e-01,
- 0.14093886410782462614e-01).finished();
-
- /*
- const Real PI2 = 0.6366197723675813;
- const Real X01P = 0.4809651115391545e01;
- const Real XMAX = std::numeric_limits<Real>::max();
- const Real XSMALL = 0.9094947017729281e-12;
- const Real J0_X01 = 0.2404825557695772e01;
- const Real J0_X02 = 0.1043754397719454e-15;
- const Real J0_X11 = 0.5520078110286310e01;
- const Real J0_X12 = 0.8088597146146419e-16;
- const Real FUDGE = 6.071532166000000e-18;
- const Real FUDGEX = 1.734723476000000e-18;
- const Real TWOPI1 = 0.6283185005187988e01;
- const Real TWOPI2 = 0.3019915981956752e-06;
- const Real RTPI2 = 0.7978845608028652e0;
- const Real XMIN = std::numeric_limits<Real>::min();
- const Real J1_X01 = 0.3831705970207512e1;
- const Real J1_X02 = -0.5967810507509414e-15;
- const Real J1_X11 = 0.7015586669815619e1;
- const Real J1_X12 = -0.5382308663841630e-15;
- */
-
- // TODO don't hard code precision like this
- HankelTransformGaussianQuadrature::HankelTransformGaussianQuadrature(
- const std::string &name) : HankelTransform(name) {
- karg.resize(255, 100);
- kern.resize(510, 100);
- }
-
- /////////////////////////////////////////////////////////////
- HankelTransformGaussianQuadrature::~HankelTransformGaussianQuadrature() {
- if (this->NumberOfReferences != 0)
- throw DeleteObjectWithReferences( this );
- }
-
-
- /////////////////////////////////////////////////////////////
- HankelTransformGaussianQuadrature*
- HankelTransformGaussianQuadrature::New() {
- HankelTransformGaussianQuadrature* Obj = new
- HankelTransformGaussianQuadrature("HankelTransformGaussianQuadrature");
- Obj->AttachTo(Obj);
- return Obj;
- }
-
- /////////////////////////////////////////////////////////////
- void HankelTransformGaussianQuadrature::Delete() {
- this->DetachFrom(this);
- }
-
- void HankelTransformGaussianQuadrature::Release() {
- delete this;
- }
-
- /////////////////////////////////////////////////////////////
-
- Complex HankelTransformGaussianQuadrature::
- Zgauss(const int &ikk, const EMMODE &mode,
- const int &itype, const Real &rho, const Real &wavef,
- KernelEm1DBase *Kernel){
-
- // TI, TODO, change calls to Zgauss to reflect this, go and fix so we
- // dont subract 1 from this everywhere
- //Kernel->SetIk(ikk+1);
- //Kernel->SetMode(mode);
- //ik = ikk+1;
- //mode = imode;
-
- Real Besr(0);
- Real Besi(0);
-
- // Parameters
- int nl(1); // Lower limit for gauss order to start comp
- int nu(7); // upper limit for gauss order
-
- #ifdef LEMMA_SINGLE_PRECISION
- Real rerr = 1e-5; // Error, for double Kihand set to .1e-10, .1e-11
- Real aerr = 1e-6;
- #else // ----- not LEMMA_SINGLE_PRECISION -----
- Real rerr = 1e-11; // Error, for double Kihand set to .1e-10, .1e-11
- Real aerr = 1e-12;
- #endif // ----- not LEMMA_SINGLE_PRECISION -----
-
- int npcs(1);
- int inew(0);
-
- //const int NTERM = 100;
- //BESINT.karg.resize(255, NTERM);
- //BESINT.kern.resize(510, NTERM);
- //this->karg.setZero();
- //this->kern.setZero();
-
- Besautn(Besr, Besi, itype, nl, nu, rho, rerr, aerr, npcs, inew,
- wavef, Kernel);
-
- return Complex(Besr, Besi);
- }
-
- //////////////////////////////////////////////////////////////////
- void HankelTransformGaussianQuadrature::
- Besautn(Real &besr, Real &besi,
- const int &besselOrder,
- const int &lowerGaussLimit,
- const int &upperGaussLimit,
- const Real &rho,
- const Real &relativeError,
- const Real &absError,
- const int& numPieces,
- int &inew,
- const Real &aorb,
- KernelEm1DBase *Kernel) {
-
- HighestGaussOrder = 0;
- NumberPartialIntegrals = 0;
- NumberFunctionEvals = 0;
-
- inew = 0;
-
- if (lowerGaussLimit > upperGaussLimit) {
- besr = 0;
- besi = 0;
- throw LowerGaussLimitGreaterThanUpperGaussLimit();
- }
-
- int ncntrl = 0;
- int nw = std::max(inew, 1);
-
- // temps
- Real besr_1(0);
- Real besi_1(0);
- int ierr(0);
- int ierr1(0);
- int ierr2(0);
- VectorXi xsum(1);
- //xsum.setZero(); // TODO xsum doesn't do a god damn thing
- int nsum(0);
-
- // Check for Rtud
- Bestrn(besr_1, besi_1, besselOrder, lowerGaussLimit, rho,
- .1*relativeError, .1*absError,
- numPieces, xsum, nsum, nw, ierr, ncntrl, aorb, Kernel);
-
- if (ierr != 0 && lowerGaussLimit == 7) {
- HighestGaussOrder = lowerGaussLimit;
- return;
-
- } else {
-
- Real oldr = besr_1;
- Real oldi = besi_1;
-
- for (int n=lowerGaussLimit+1; n<=upperGaussLimit; ++n) {
- int nw2 = 2;
- Bestrn(besr_1, besi_1, besselOrder, n, rho, .1*relativeError,
- .1*absError, numPieces, xsum, nsum, nw2, ierr,
- ncntrl, aorb, Kernel);
- if (ierr != 0 && n==7) {
- besr_1 = oldr;
- besi_1 = oldi;
- HighestGaussOrder = n;
- std::cerr << "CONVERGENCE FAILED AT SMALL ARGUMNENT!\n";
- ierr1 = ierr + 10;
- break;
- } else if (std::abs(besr_1-oldr) <=
- relativeError*std::abs(besr_1)+absError &&
- std::abs(besi_1-oldi) <=
- relativeError*std::abs(besi_1)+absError) {
- HighestGaussOrder = n;
- break;
- } else {
- oldr = besr_1;
- oldi = besi_1;
- }
- }
- }
-
- inew = 0;
- ncntrl = 1;
- nw=std::max(inew, 1);
- Real besr_2, besi_2;
-
- //karg.setZero();
- //kern.setZero();
-
- HighestGaussOrder = 0;
- NumberPartialIntegrals = 0;
- NumberFunctionEvals = 0;
-
- Bestrn(besr_2, besi_2, besselOrder, lowerGaussLimit, rho,
- .1*relativeError, .1*absError,
- numPieces, xsum, nsum, nw, ierr, ncntrl, aorb, Kernel);
-
- if (ierr != 0 && lowerGaussLimit == 7) {
- HighestGaussOrder = lowerGaussLimit;
- return;
- } else {
-
- Real oldr = besr_2;
- Real oldi = besi_2;
-
- for (int n=lowerGaussLimit+1; n<=upperGaussLimit; ++n) {
-
- int nw2 = 2;
- Bestrn(besr_2, besi_2, besselOrder, n, rho, .1*relativeError,
- .1*absError, numPieces, xsum, nsum, nw2, ierr,
- ncntrl, aorb, Kernel);
-
- if (ierr != 0 && n==7) {
- besr_2 = oldr;
- besi_2 = oldi;
- HighestGaussOrder = n;
- std::cerr << "CONVERGENCE FAILED AT SMALL ARGUMNENT!\n";
- ierr2 = ierr + 20;
- break;
- } else if (std::abs(besr_2-oldr) <=
- relativeError*std::abs(besr_2)+absError &&
- std::abs(besi_2-oldi) <=
- relativeError*std::abs(besi_2)+absError) {
- HighestGaussOrder = n;
- break;
- } else {
- oldr = besr_2;
- oldi = besi_2;
- }
- }
- }
-
- besr = besr_1 + besr_2;
- besi = besi_1 + besi_2;
- ierr = ierr1 + ierr2;
- return;
- }
-
- /////////////////////////////////////////////////////////////
- void HankelTransformGaussianQuadrature::
- Bestrn(Real &BESR, Real &BESI, const int &IORDER,
- const int &NG, const Real &rho,
- const Real &RERR, const Real &AERR, const int &NPCS,
- VectorXi &XSUM, int &NSUM, int &NEW,
- int &IERR, int &NCNTRL, const Real &AORB, KernelEm1DBase *Kernel) {
-
-
- Xr.setZero();
- Xi.setZero();
- Dr.setZero();
- Di.setZero();
- Sr.setZero();
- Si.setZero();
- Cfcor.setZero();
- Cfcoi.setZero();
- Dr.setZero();
- Di.setZero();
-
- Dr(0) = (Real)(-1);
-
- const int NTERM = 100;
- const int NSTOP = 100;
-
- int NPO;
-
- //std::cout << "Bestrn NEW " << NEW << std::endl;
-
- if (NEW == 2) {
- NPO = nps;
- } else {
- Nk.setZero();
- nps = 0;
- NPO=NTERM;
- }
-
- // Trivial?
- if (IORDER != 0 && rho == 0) {
- BESR = 0;
- BESI = 0;
- IERR = 0;
- return;
- }
-
- NumberPartialIntegrals=0;
- int NW = NEW;
- np = 0; // TI, zero based indexing
-
- int NPB = 1; // 0?
- int L = 0; // TODO, should be 0?
- Real B = 0.;
- Real A = 0.;
- Real SUMR = 0.;
- Real SUMI = 0.;
- Real XSUMR = 0.;
- Real XSUMI = 0.;
- Real TERMR(0), TERMI(0);
-
- // COMPUTE BESSEL TRANSFORM EXPLICITLY ON (0,XSUM(NSUM))
- if (NSUM > 0) {
- std::cerr << "NSUM GREATER THAN ZERO UNTESTED" << std::endl;
- Real LASTR=0.0;
- Real LASTI=0.0;
- for (int N=1; N<=NSUM; ++N) {
- if (NW == 2 && np > NPO) NW=1;
- if (np > NTERM) NW=0;
- A=B;
- B=XSUM(N);
- Besqud(A, B, TERMR, TERMI, NG, NW, IORDER, rho, Kernel);
-
- XSUMR += TERMR;
- XSUMI += TERMI;
- if ( (std::abs(XSUMR-LASTR) <= RERR*std::abs(XSUMR)+AERR) &&
- (std::abs(XSUMI-LASTI) <= RERR*std::abs(XSUMI)+AERR)) {
- BESR=XSUMR;
- BESI=XSUMI;
- IERR=0;
- nps = std::max(np, nps);
- return;
- } else {
- ++np;
- LASTR=XSUMR;
- LASTI=XSUMI;
- }
- }
- while (ZeroJ(NPB,IORDER) > XSUM(NSUM*rho)) {
- ++NPB;
- }
- }
-
- // ENTRY POINT FOR PADE SUMMATION OF PARTIAL INTEGRANDS
- Real LASTR=0.e0;
- Real LASTI=0.e0;
- if (NCNTRL == 0) {
- A = 0.;
- B = ZeroJ(NPB,IORDER) / rho;
- if (B > AORB) {
- B = AORB;
- }
- } else {
- A = AORB;
- B = ZeroJ(NPB,IORDER)/rho;
- while (B <= A) {
- ++NPB;
- B = ZeroJ(NPB,IORDER)/rho;
- }
- }
-
- // CALCULATE TERMS AND SUM WITH PADECF, QUITTING WHEN CONVERGENCE IS
- // OBTAINED
- if (NCNTRL != 0) {
-
- for (int N=1; N<=NSTOP; ++N) {
-
- if (NPCS == 1) {
-
- if ((NW==2) && (np > NPO)) {
- NW=1;
- }
-
- if (np > NTERM) {
- NW=0;
- }
-
- Besqud(A,B,TERMR,TERMI,NG,NW,IORDER,rho,Kernel);
-
- ++np;
-
- } else {
- std::cout << "In the else conditional\n";
- TERMR=0.;
- TERMI=0.;
- Real XINC=(B-A)/NPCS;
- Real AA=A;
- Real BB=A+XINC;
- for (int I=1; I<=NPCS; ++I) {
- if ((NW == 2) && (np > NPO)) NW=1;
- if (np > NTERM) NW=0;
- Real TR, TI;
- Besqud(AA, BB, TR, TI, NG, NW, IORDER, rho, Kernel);
- TERMR+=TR;
- TERMI+=TI;
- AA=BB;
- BB=BB+XINC;
- ++np;
- }
- }
-
- ++NumberPartialIntegrals;
- Sr(L) = TERMR;
- Si(L) = TERMI;
-
- Padecf(SUMR,SUMI,L);
-
- if ((std::abs(SUMR-LASTR) <= RERR*std::abs(SUMR)+AERR) &&
- (std::abs(SUMI-LASTI) <= RERR*std::abs(SUMI)+AERR)) {
- BESR=XSUMR+SUMR;
- BESI=XSUMI+SUMI;
- IERR=0;
- nps = std::max(np-1, nps);
- return;
- } else {
- LASTR=SUMR;
- LASTI=SUMI;
- ++NPB;
- A=B;
- B=ZeroJ(NPB,IORDER)/rho;
- ++L;
- }
- }
-
- BESR=XSUMR+SUMR;
- BESI=XSUMI+SUMI;
- IERR=1;
- nps = std::max(np, nps);
- return;
- }
-
- // GUSSIAN QUADRATURE ONLY IN THE INTERVAL IN WHICH K_0 IS LESS THAN
- // LAMBDA
- //std::cout << "NCNTRL " << NCNTRL << " NPCS " << NPCS << std::endl;
- for (int N=1; N<=NSTOP; ++N) {
-
- //std::cout << "NSTOP" << NSTOP << std::endl;
-
- if (NPCS == 1) {
-
- if ((NW==2) && (np > NPO)) {
- NW=1;
- }
-
- if (np > NTERM) {
- NW=0;
- }
-
- // Problem here, A not getting initialised
- //std::cout << "A " << A << " B " << B << std::endl;
- Besqud(A, B, TERMR, TERMI, NG, NW, IORDER, rho, Kernel);
-
- ++np;
-
- } else {
-
- TERMR=0.;
- TERMI=0.;
- Real XINC=(B-A)/NPCS;
- Real AA=A;
- Real BB=A+XINC;
- Real TR(0), TI(0);
- for (int I=1; I<NPCS; ++I) {
-
- if ((NW == 2) && (np > NPO)) {
- NW=1;
- }
-
- if (np > NTERM) {
- NW=0;
- }
- //std::cout << "AA " << AA << " BB " << BB << std::endl;
- Besqud(AA, BB, TR, TI, NG, NW, IORDER, rho, Kernel);
- TERMR+=TR;
- TERMI+=TI;
- AA=BB;
- BB=BB+XINC;
- ++np;
- }
- }
-
- if (B >= AORB) {
- BESR=XSUMR+TERMR;
- BESI=XSUMI+TERMI;
- IERR=0;
- nps = std::max(np, nps); // TI np is zero based
- return;
- } else {
- XSUMR = XSUMR + TERMR;
- XSUMI = XSUMI + TERMI;
- ++NPB;
- A = B;
- B = ZeroJ(NPB,IORDER)/rho;
- if (B >= AORB) B = AORB;
- }
- }
- return;
- }
-
-
- /////////////////////////////////////////////////////////////
- void HankelTransformGaussianQuadrature::
- Besqud(const Real &LowerLimit, const Real &UpperLimit,
- Real &Besr, Real &Besi, const int &npoints,
- const int &NEW,
- const int &besselOrder, const Real &rho,
- KernelEm1DBase* Kernel) {
-
- const int NTERM = 100;
-
- // Filter Weights
- Eigen::Matrix<int , 7, 1> NWA;
- Eigen::Matrix<int , 7, 1> NWT;
- Eigen::Matrix<Real, 254, 1> FUNCT;
- Eigen::Matrix<Real, 64, 1> FR1;
- Eigen::Matrix<Real, 64, 1> FI1;
- Eigen::Matrix<Real, 64, 1> FR2;
- Eigen::Matrix<Real, 64, 1> FI2;
- Eigen::Matrix<Real, 64, 1> BES1;
- Eigen::Matrix<Real, 64, 1> BES2;
-
- // Init Vals
- NWT << 1, 3, 7, 15, 31, 63, 127;
- NWA << 1, 2, 4, 8, 16, 32, 64;
-
- // CHECK FOR TRIVIAL CASE
- if (LowerLimit >= UpperLimit) {
- Besr = 0.;
- Besi = 0.;
- //std::cout << "Lower limit > Upper limit " << NEW << std::endl;
- //std::cout << "Lower limit " << LowerLimit << "Upper Limit " << UpperLimit <<std::endl;
- return;
- }
-
- // Temp vars for function generation
- Real diff(0);
- Real FZEROR(0);
- Real FZEROI(0);
- Real SUM(0);
- int KN(0);
- int LA(0);
- int LK(0);
- int N(0);
-
- int K;
- int NW;
- Real ACUMR;
- Real ACUMI;
- Real BESF;
-
- switch (NEW) {
-
- // CONSTRUCT FUNCT FROM SAVED KERNELS
- case (2):
-
- diff = (UpperLimit-LowerLimit)/2.;
- FZEROR = kern(0, np);
- FZEROI = kern(1, np);
-
- K = std::min(Nk(np)-1, npoints-1);
- NW=NWT(K);
-
- LK=2;
-
- for (N=0; N<2*NW; N+=2) {
- FUNCT(N) = kern(LK , np) +
- kern(LK+2, np) ;
-
- FUNCT(N+1) = kern(LK+1, np) +
- kern(LK+3, np) ;
- LK=LK+4;
- }
-
- if (Nk(np) >= npoints) {
- ACUMR = _dot(NW, WT.tail(255-NW), 1, FUNCT, 2);
- ACUMI = _dot(NW, WT.tail(255-NW), 1, FUNCT.tail<253>(), 2);
- Besr = (ACUMR+WT(2*NW)*FZEROR)*diff;
- Besi = (ACUMI+WT(2*NW)*FZEROI)*diff;
- return;
-
- } else {
-
- // COMPUTE ADDITIONAL ORDERS BEFORE TAKING DOT PRODUCT
- SUM= (UpperLimit+LowerLimit)/2.;
- KN = K +1;
- LA = LK/2;
-
- }
-
- break;
-
- default:
-
- // SCALE FACTORS
- SUM = (UpperLimit+LowerLimit) / 2.;
- diff = (UpperLimit-LowerLimit) / 2.;
-
- // ONE POINT GAUSS
- //Kernel(SUM,FZEROR,FZEROI,TEM,GEOM,PARA);
- Complex tba = Kernel->BesselArg(SUM);
- //cout.precision(16);
- //std::cout << "SUM " << "\t" << SUM << "\t" << tba << "\n";
- ++NumberFunctionEvals;
-
- BESF = Jbess(SUM*rho,besselOrder);
- FZEROR = BESF*std::real(tba);//FZEROR;
- FZEROI = BESF*std::imag(tba);//FZEROI;
-
- if (NEW == 1) {
- karg(0, np) = SUM;
- kern(0, np) = FZEROR;
- kern(1, np) = FZEROI;
- LA=1;
- LK=2;
- }
- N = 0; // TI was 1, 0 based index
- KN = 0;
-
- } // End of new switch
-
- // STEP THROUGH GAUSS ORDERS (NG = Number Gauss)
- for (int K=KN; K<npoints; ++K) {
-
- // COMPUTE NEW FUNCTION VALUES
- int NA = NWA(K) - 1; // NWA assumes 1 based indexing
-
- //std::cout << "Besqud NA=" << NA << std::endl;
- for (int J=0; J<NWA(K); ++J) {
-
- Real X = WA(NA)*diff;
-
- Real SUMP = SUM+X;
- Real SUMM = SUM-X;
-
- ++NA;
-
- //std::cout << "Calling from here\n";
- //Kernel(SUMP, FR1(J), FI1(J), TEM, GEOM, PARA);
- //Kernel(SUMM, FR2(J), FI2(J), TEM, GEOM, PARA);
- Complex bes1 = Kernel->BesselArg(SUMP);
- //std::cout << "SUMP" << "\t" << SUMP << "\t" << bes1 << "\n";
- Complex bes2 = Kernel->BesselArg(SUMM);
- //std::cout << "SUMM" << "\t" << SUMM << "\t" << bes1 << "\n";
- FR1(J) = std::real(bes1);
- FI1(J) = std::imag(bes1);
- FR2(J) = std::real(bes2);
- FI2(J) = std::imag(bes2);
-
- NumberFunctionEvals +=2;
- BES1(J)=Jbess(SUMP*rho, besselOrder);
- BES2(J)=Jbess(SUMM*rho, besselOrder);
-
- if (NEW >= 1) {
- karg(LA , np) = SUMP;
- karg(LA+1, np) = SUMM;
- LA += 2;
- }
- }
-
- // COMPUTE PRODUCTS OF KERNELS AND BESSEL FUNCTIONS
- // TODO vectorize
- for (int J=0; J<NWA(K); ++J) {
- FR1(J ) = BES1(J)*FR1(J);
- FI1(J ) = BES1(J)*FI1(J);
- FR2(J ) = BES2(J)*FR2(J);
- FI2(J ) = BES2(J)*FI2(J);
- FUNCT(N ) = FR1(J)+FR2(J);
- FUNCT(N+1) = FI1(J)+FI2(J);
- N+=2;
- }
-
- if (NEW >= 1) {
- for (int J=0; J<NWA(K); ++J) {
- kern(LK , np) = FR1(J);
- kern(LK+1, np) = FI1(J);
- kern(LK+2, np) = FR2(J);
- kern(LK+3, np) = FI2(J);
- LK=LK+4;
- }
- }
-
- }
-
- // COMPUTE DOT PRODUCT OF WEIGHTS WITH INTEGRAND VALUES
- NW=NWT(npoints-1);
- ACUMR = _dot(NW, WT.tail(255-NW), 1, FUNCT , 2);
- ACUMI = _dot(NW, WT.tail(255-NW), 1, FUNCT.tail<253>(), 2);
- Besr = (ACUMR+WT(2*NW-1)*FZEROR)*diff;
- Besi = (ACUMI+WT(2*NW-1)*FZEROI)*diff;
- if (np <= NTERM) Nk(np) = npoints;
- return;
- }
-
-
- /////////////////////////////////////////////////////////////
- void HankelTransformGaussianQuadrature::
- Padecf(Real &SUMR, Real &SUMI, const int &N) {
-
- if (N < 2) {
-
- // INITIALIZE FOR RECURSIVE CALCULATIONS
- //if (N == 0) {
- // Xr.setZero();
- // Xi.setZero();
- //Xr = Eigen::Matrix<Real, Eigen::Dynamic, 1>::Zero(100);
- //Xi = Eigen::Matrix<Real, Eigen::Dynamic, 1>::Zero(100);
- //}
-
- Dr(N) = Sr(N);
- Di(N) = Si(N);
-
- Real DENOM;
- switch (N) {
-
- case 0:
- DENOM = 1;
- Cfcor(N) = -(-1.*Dr(N)) / DENOM;
- Cfcoi(N) = -(-1.*Di(N)) / DENOM;
- break;
-
- default:
- DENOM = Dr(N-1)*Dr(N-1) +
- Di(N-1)*Di(N-1);
-
- Cfcor(N) = -(Dr(N-1)*Dr(N) +
- Di(N-1)*Di(N) ) / DENOM;
- Cfcoi(N) = -(Dr(N-1)*Di(N ) -
- Dr(N )*Di(N-1) ) / DENOM;
- }
-
- CF(SUMR, SUMI, Cfcor, Cfcoi, N);
- return;
-
- } else {
- int L = 2*(int)((N)/2) - 1;//+1;// - 1; // - 1; // - 1;
-
- // UPDATE X VECTORS FOR RECURSIVE CALCULATION OF CF COEFFICIENTS
- for (int K = L; K >= 3; K-= 2) {
- Xr(K) = Xr(K-1)+Cfcor(N-1)*Xr(K-2) -
- Cfcoi(N-1)*Xi(K-2);
-
- Xi(K) = Xi(K-1)+Cfcor(N-1)*Xi(K-2) +
- Cfcoi(N-1)*Xr(K-2);
- }
-
- Xr(1) = Xr(0)+Cfcor(N-1);
- Xi(1) = Xi(0)+Cfcoi(N-1);
-
- // INTERCHANGE ODD AND EVEN PARTS
- for (int K=0; K<L; K+=2) {
- Real T1 = Xr(K);
- Real T2 = Xi(K);
- Xr(K) = Xr(K+1);
- Xi(K) = Xi(K+1);
- Xr(K+1) = T1;
- Xi(K+1) = T2;
- }
-
- // COMPUTE FIRST COEFFICIENTS
- Dr(N) = Sr(N);
- Di(N) = Si(N);
- // Dr getting fucked up here
- for (int K=0; K<std::max(1, L/2+1); ++K) {
- Dr(N) += Sr(N-K-1)*Xr(2*K) -
- Si(N-K-1)*Xi(2*K);
- Di(N) += Si(N-K-1)*Xr(2*K) +
- Sr(N-K-1)*Xi(2*K);
- }
-
- // COMPUTE NEW CF COEFFICIENT
- Real DENOM = Dr(N-1)*Dr(N-1) +
- Di(N-1)*Di(N-1);
-
- //std::cout << "DENOM " << DENOM << std::endl;
- Cfcor(N)=-(Dr(N )*Dr(N-1) +
- Di(N)*Di(N-1))/DENOM;
- Cfcoi(N)=-(Dr(N-1)*Di(N ) -
- Dr(N)*Di(N-1))/DENOM;
-
- // EVALUATE CONTINUED FRACTION
- CF(SUMR,SUMI,Cfcor,Cfcoi,N);
-
- return;
- }
- }
-
- /////////////////////////////////////////////////////////////
- void HankelTransformGaussianQuadrature::CF(Real& RESR, Real &RESI,
- Eigen::Matrix<Real, 100, 1> &CFCOR,
- Eigen::Matrix<Real, 100, 1> &CFCOI,
- const int &N) {
-
- ////////////////////////////////////////////////
- // ONE Seems sort of stupid, maybe use ? instead
- // TODO benchmark difference
-
- //RESR = ONE(N)+CFCOR(N);
- RESR = (!N ? 0:1) + CFCOR(N);
- RESI = CFCOI(N);
-
- for (int K=N-1; K>=0; --K) {
- Real DENOM=RESR*RESR + RESI*RESI;
- Real RESRO=RESR;
- //RESR=ONE(K)+(RESR*CFCOR(K)+RESI*CFCOI(K))/DENOM;
- RESR = (!K ? 0:1) + (RESR*CFCOR(K)+RESI*CFCOI(K))/DENOM;
- RESI=(RESRO*CFCOI(K)-RESI*CFCOR(K))/DENOM;
- }
-
- return;
- }
-
- /////////////////////////////////////////////////////////////
- Real HankelTransformGaussianQuadrature::
- ZeroJ(const int &nzero, const int &besselOrder) {
-
- Real ZT1 = -1.e0/8.e0;
- Real ZT2 = 124.e0/1536.e0;
- Real ZT3 = -120928.e0/491520.e0;
- Real ZT4 = 401743168.e0/220200960.e0;
- Real OT1 = 3.e0/8.e0;
- Real OT2 = -36.e0/1536.e0;
- Real OT3 = 113184.e0/491520.e0;
- Real OT4 = -1951209.e0/220200960.e0;
-
- Real BETA(0);
- switch (besselOrder) {
-
- case 0:
- BETA=(nzero-.25e0)*PI;
- return BETA-ZT1/BETA-ZT2/std::pow(BETA,3) -
- ZT3/std::pow(BETA,5)-ZT4/std::pow(BETA,7);
- case 1:
- BETA=(nzero+.25e0)*PI;
- return BETA-OT1/BETA-OT2/std::pow(BETA,3) -
- OT3/std::pow(BETA,5)-OT4/std::pow(BETA,7);
- default:
- throw 77;
- }
- return 0.;
- }
-
-
- /////////////////////////////////////////////////////////////
- // Dot product allowing non 1 based incrementing
- Real HankelTransformGaussianQuadrature::_dot(const int&n,
- const Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic> &X1,
- const int &inc1,
- const Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic> &X2,
- const int &inc2) {
-
- int k;
- if (inc2 > 0) {
- k=0;
- } else {
- k = n*std::abs(inc2);
- }
-
- Real dot=0.0;
- if (inc1 > 0) {
- for (int i=0; i<n; i += inc1) {
- dot += X1(i)*X2(k);
- k += inc2;
- }
- } else {
- for (int i=n-1; i>=0; i += inc1) {
- dot += X1(i)*X2(k);
- k += inc2;
- }
- }
-
- return dot;
- }
-
- /////////////////////////////////////////////////////////////
- //
- Real HankelTransformGaussianQuadrature::Jbess(const Real &x, const int &IORDER) {
-
- #ifdef HAVEBOOSTCYLBESSEL
-
- switch (IORDER) {
- case 0:
- //return boost::math::detail::bessel_j0(X);
- return boost::math::cyl_bessel_j(0, x);
- break;
- case 1:
- //return boost::math::detail::bessel_j1(x);
- return boost::math::cyl_bessel_j(1, x);
- break;
- default:
- throw 77;
- }
- #else
- std::cerr << "Chave Hankel transform requires boost, which Lemma was bot built with\n";
- return 0.;
- #endif
-
- }
-
- //////////////////////////////////////////////////////
- // Exception classes
-
- LowerGaussLimitGreaterThanUpperGaussLimit::
- LowerGaussLimitGreaterThanUpperGaussLimit() :
- runtime_error("LOWER GAUSS LIMIT > UPPER GAUSS LIMIT") {}
-
- } // ----- end of Lemma name -----
|