Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

PolygonalWireAntenna.cpp 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 05/18/2010
  9. @version $Id: PolygonalWireAntenna.cpp 211 2015-02-27 05:43:26Z tirons $
  10. **/
  11. #include "PolygonalWireAntenna.h"
  12. namespace Lemma {
  13. std::ostream &operator << (std::ostream &stream, const PolygonalWireAntenna &ob) {
  14. stream << ob.Serialize() << "\n---\n"; // End of doc --- as a direct stream should encapulste thingy
  15. return stream;
  16. }
  17. // ==================== LIFECYCLE =======================
  18. PolygonalWireAntenna::PolygonalWireAntenna( const ctor_key& key ) : WireAntenna( WireAntenna::ctor_key() ), minDipoleRatio(.15),
  19. minDipoleMoment(1e-6), maxDipoleMoment(1e1), rRepeat(1e10,1e10,1e10) {
  20. Points.setZero();
  21. //rRepeat.setOnes();
  22. }
  23. PolygonalWireAntenna::PolygonalWireAntenna( const YAML::Node& node, const ctor_key& ) : WireAntenna(node, WireAntenna::ctor_key() ) {
  24. minDipoleRatio = node["minDipoleRatio"].as<Real>();
  25. maxDipoleMoment = node["maxDipoleMoment"].as<Real>();
  26. minDipoleMoment = node["minDipoleMoment"].as<Real>();
  27. }
  28. PolygonalWireAntenna::~PolygonalWireAntenna() {
  29. }
  30. //--------------------------------------------------------------------------------------
  31. // Class: PolygonalWireAntenna
  32. // Method: Serialize
  33. //--------------------------------------------------------------------------------------
  34. YAML::Node PolygonalWireAntenna::Serialize ( ) const {
  35. YAML::Node node = WireAntenna::Serialize();
  36. node.SetTag( this->GetName() );
  37. node["minDipoleRatio"] = minDipoleRatio;
  38. node["maxDipoleMoment"] = maxDipoleMoment;
  39. node["minDipoleMoment"] = minDipoleMoment;
  40. return node;
  41. } // ----- end of method PolygonalWireAntenna::Serialize -----
  42. //--------------------------------------------------------------------------------------
  43. // Class: WireAntenna
  44. // Method: DeSerialize
  45. //--------------------------------------------------------------------------------------
  46. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::DeSerialize ( const YAML::Node& node ) {
  47. if (node.Tag() != "PolygonalWireAntenna") {
  48. throw DeSerializeTypeMismatch( "PolygonalWireAntenna", node.Tag());
  49. }
  50. return std::make_shared<PolygonalWireAntenna> ( node, ctor_key() );
  51. } // ----- end of method WireAntenna::DeSerialize -----
  52. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::NewSP() {
  53. return std::make_shared<PolygonalWireAntenna>( ctor_key() );
  54. }
  55. std::shared_ptr<WireAntenna> PolygonalWireAntenna::Clone() const {
  56. auto copy = PolygonalWireAntenna::NewSP();
  57. copy->minDipoleRatio = this->minDipoleRatio;
  58. copy->minDipoleMoment = this->minDipoleMoment;
  59. copy->maxDipoleMoment = this->maxDipoleMoment;
  60. copy->NumberOfPoints = this->NumberOfPoints;
  61. copy->Freqs = this->Freqs;
  62. copy->Current = this->Current;
  63. copy->NumberOfTurns = this->NumberOfTurns;
  64. copy->Points = this->Points;
  65. //copy->Dipoles = this->Dipoles; // no, disaster
  66. return copy;
  67. }
  68. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::ClonePA() const {
  69. auto copy = PolygonalWireAntenna::NewSP();
  70. copy->minDipoleRatio = this->minDipoleRatio;
  71. copy->minDipoleMoment = this->minDipoleMoment;
  72. copy->maxDipoleMoment = this->maxDipoleMoment;
  73. copy->NumberOfPoints = this->NumberOfPoints;
  74. copy->Freqs = this->Freqs;
  75. copy->Current = this->Current;
  76. copy->NumberOfTurns = this->NumberOfTurns;
  77. copy->Points = this->Points;
  78. //copy->Dipoles = this->Dipoles; // no, disaster
  79. return copy;
  80. }
  81. void PolygonalWireAntenna::SetMinDipoleRatio (const Real& ratio) {
  82. minDipoleRatio = ratio;
  83. }
  84. void PolygonalWireAntenna::SetMinDipoleMoment (const Real& m) {
  85. minDipoleMoment = m;
  86. }
  87. void PolygonalWireAntenna::SetMaxDipoleMoment (const Real& m) {
  88. maxDipoleMoment = m;
  89. }
  90. // ==================== OPERATIONS =======================
  91. void PolygonalWireAntenna::ApproximateWithElectricDipoles(const Vector3r &rp) {
  92. // Only resplit if necessary. Save a few cycles if repeated
  93. if ( (rRepeat-rp).norm() > 1e-16 ) {
  94. Dipoles.clear();
  95. // loop over all segments
  96. for (int iseg=0; iseg<NumberOfPoints-1; ++iseg) {
  97. InterpolateLineSegment(Points.col(iseg), Points.col(iseg+1), rp);
  98. }
  99. rRepeat = rp;
  100. } else {
  101. for (unsigned int id=0; id<Dipoles.size(); ++id) {
  102. Dipoles[id]->SetFrequencies(Freqs);
  103. }
  104. }
  105. }
  106. Vector3r PolygonalWireAntenna::ClosestPointOnLine(const Vector3r &p1,
  107. const Vector3r &p2, const Vector3r &tp) {
  108. Vector3r v1 = p2 - p1;
  109. Vector3r v2 = p1 - tp;
  110. Vector3r v3 = p1 - p2;
  111. Vector3r v4 = p2 - tp;
  112. Real dot1 = v2.dot(v1);
  113. Real dot2 = v1.dot(v1);
  114. Real dot3 = v4.dot(v3);
  115. Real dot4 = v3.dot(v3);
  116. Real t1 = -1.*dot1/dot2;
  117. Real t2 = -1.*dot3/dot4;
  118. Vector3r pos = p1+v1*t1 ;
  119. // check if on line
  120. // else give back the closest end point
  121. if ( t1>=0 && t2>=0. ) {
  122. return pos;
  123. } else if (t1<0) {
  124. return p1;
  125. } else {
  126. return p2;
  127. }
  128. }
  129. void PolygonalWireAntenna::PushXYZDipoles(const Vector3r &step,
  130. const Vector3r &cp, const Vector3r &dir,
  131. std::vector< std::shared_ptr<DipoleSource> > &xDipoles) {
  132. Real scale = (Real)(NumberOfTurns)*Current;
  133. auto tx = DipoleSource::NewSP();
  134. tx->SetLocation(cp);
  135. tx->SetType(UNGROUNDEDELECTRICDIPOLE);
  136. tx->SetPolarisation(dir);
  137. tx->SetFrequencies(Freqs);
  138. tx->SetMoment(scale*step.norm());
  139. xDipoles.push_back(tx);
  140. }
  141. void PolygonalWireAntenna::CorrectOverstepXYZDipoles(const Vector3r &step,
  142. const Vector3r &cp, const Vector3r &dir,
  143. std::vector< std::shared_ptr<DipoleSource> > &xDipoles ) {
  144. Real scale = (Real)(NumberOfTurns)*Current;
  145. // X oriented dipoles
  146. if (step.norm() > minDipoleMoment) {
  147. xDipoles[xDipoles.size()-1]->SetLocation(cp);
  148. xDipoles[xDipoles.size()-1]->SetMoment(scale*step.norm());
  149. }
  150. }
  151. void PolygonalWireAntenna::InterpolateLineSegment(const Vector3r &p1,
  152. const Vector3r &p2, const Vector3r & tp) {
  153. Vector3r phat = (p1-p2).array() / (p1-p2).norm();
  154. Vector3r c = this->ClosestPointOnLine(p1, p2, tp);
  155. Real dtp = (tp-c).norm(); // distance to point at c
  156. Real dc1 = (p1-c).norm(); // distance to c from p1
  157. Real dc2 = (p2-c).norm(); // distance to c from p1
  158. // unit vector
  159. Vector3r cdir = (p2-p1).array() / (p2-p1).norm();
  160. ///////////////////
  161. // dipoles for this segment
  162. std::vector< std::shared_ptr<DipoleSource> > xDipoles;
  163. // go towards p1
  164. if ( ((c-p1).array().abs() > minDipoleMoment).any() ) {
  165. // cp = current pos, lp = last pos
  166. Vector3r cp = c + phat*(dtp*minDipoleRatio)*.5;
  167. Vector3r lp = c;
  168. Real dist = (cp-p1).norm();
  169. Real dist_old = dist+1.;
  170. // check that we didn't run past the end, or that we aren't starting at
  171. // the end, or that initial step runs over!
  172. Vector3r dir = (p1-cp).array() / (p1-cp).norm(); // direction of movement
  173. Vector3r step = phat*(dtp*minDipoleRatio);
  174. Vector3r stepold = Vector3r::Zero();
  175. // (dir-phat) just shows if we are stepping towards or away from p1
  176. while (dist < dist_old && (dir-phat).norm() < 1e-8) {
  177. PushXYZDipoles(step, cp, cdir, xDipoles);
  178. // Make 1/2 of previous step, 1/2 of this step, store this step
  179. stepold = step;
  180. step = phat*( (cp-tp).norm()*minDipoleRatio );
  181. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  182. step *= .5;
  183. }
  184. lp = cp;
  185. cp += .5*stepold + .5*step;
  186. dist = (cp-p1).norm();
  187. dir = (p1-cp).array() / (p1-cp).norm();
  188. }
  189. // cp now points to end last of dipole moments
  190. cp -= .5*step;
  191. // Fix last dipole position, so that entire wire is represented,
  192. // and no more
  193. Real distLastSeg = (c - cp).norm();
  194. if (distLastSeg + minDipoleMoment < dc1) {
  195. // case 1: understep, add dipole
  196. step = (p1-cp).array();
  197. cp += .5*step;
  198. PushXYZDipoles(step, cp, cdir, xDipoles);
  199. } else if (distLastSeg > dc1 + minDipoleMoment) {
  200. // case 2: overstep, reposition dipole and size
  201. step = (p1 - (lp-.5*stepold));
  202. cp = (lp-.5*stepold) + (.5*step);
  203. CorrectOverstepXYZDipoles(step, cp, cdir, xDipoles);
  204. }
  205. // else case 0: nearly 'perfect' fit do nothing
  206. }
  207. // go towards p2
  208. if ( ( (c-p2).array().abs() > minDipoleMoment).any() ) {
  209. // cp = current pos, lp = last pos
  210. Vector3r step = -phat*(dtp*minDipoleRatio);
  211. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  212. step *= .5;
  213. }
  214. Vector3r cp = c + step*.5;
  215. Vector3r lp = c;
  216. Real dist = (p2-cp).norm();
  217. Real dist_old = dist+1e3;
  218. // check that we didn't run past the end, or that we aren't starting at
  219. // the end, or that initial step runs over!
  220. Vector3r dir = (p2-cp).array() / (p2-cp).norm(); // direction of movement
  221. Vector3r stepold = Vector3r::Zero();
  222. // (dir-phat) just shows if we are stepping towards or away from p1
  223. while (dist < dist_old && (dir+phat).norm() < 1e-8) {
  224. PushXYZDipoles(step, cp, cdir, xDipoles);
  225. // Make 1/2 of previous step, 1/2 of this step, store this step
  226. stepold = step;
  227. step = -phat*( (cp-tp).norm()*minDipoleRatio );
  228. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  229. step *= .5;
  230. }
  231. lp = cp;
  232. cp += .5*stepold + .5*step;
  233. dist = (cp-p2).norm();
  234. dir = (p2-cp).array() / (p2-cp).norm();
  235. }
  236. // cp now points to end last of dipole moments
  237. cp -= .5*step;
  238. // Fix last dipole position, so that entire wire is represented,
  239. // and no more
  240. Real distLastSeg = (c - cp).norm();
  241. if (distLastSeg + minDipoleMoment < dc2) {
  242. // case 1: understep, add dipole
  243. step = (p2-cp).array();
  244. cp += .5*step;
  245. PushXYZDipoles(step, cp, cdir, xDipoles);
  246. } else if (distLastSeg > dc2 + minDipoleMoment) {
  247. // case 2: overstep, reposition dipole and size
  248. step = (p2 - (lp-.5*stepold));
  249. cp = (lp-.5*stepold) + (.5*step);
  250. CorrectOverstepXYZDipoles(step, cp, cdir, xDipoles);
  251. }
  252. // else case 0: nearly 'perfect' fit do nothing
  253. }
  254. Dipoles.insert(Dipoles.end(), xDipoles.begin(), xDipoles.end());
  255. }
  256. }