/* This file is part of Lemma, a geophysical modelling and inversion API. * More information is available at http://lemmasoftware.org */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * @file * @date 11/11/2016 02:44:37 PM * @version $Id$ * @author Trevor Irons (ti) * @email tirons@egi.utah.edu * @copyright Copyright (c) 2016, University of Utah * @copyright Copyright (c) 2016, Lemma Software, LLC */ #include using namespace Lemma; int main(int argc, char** argv) { if (argc<4) { std::cout << "./KernelV0-2 earth.yaml tx.yaml rx.yaml \n"; return(EXIT_SUCCESS); } std::cout << "Using earth model: " << argv[1] << std::endl; auto earth = LayeredEarthEM::DeSerialize( YAML::LoadFile(argv[1]) ); std::cout << "Using transmitter: " << argv[2] << std::endl; auto Tx = PolygonalWireAntenna::DeSerialize( YAML::LoadFile(argv[2]) ); std::cout << "Using receivers: " << argv[3] << std::endl; auto Rx1 = PolygonalWireAntenna::DeSerialize( YAML::LoadFile(argv[3]) ); auto Kern = KernelV0::NewSP(); Kern->PushCoil( "Coil 1", Tx ); Kern->PushCoil( "Coil 2", Rx1 ); Kern->SetLayeredEarthEM( earth ); Kern->SetIntegrationSize( (Vector3r() << 20.2151538,20.438572,100).finished() ); Kern->SetIntegrationOrigin( (Vector3r() << -10, -10, .5).finished() ); Real tol(1e-13); // 13 Kern->SetTolerance( tol ); // 1e-12 // Kern->AlignWithAkvoDataset( YAML::LoadFile(argv[2]) ); Kern->SetPulseDuration(0.020); VectorXr I(36); // off from VC by 1.075926340216996 // Pulses from Wyoming Red Buttes exp 0 I << 397.4208916184016, 352.364477036168, 313.0112765842783, 278.37896394065376, 247.81424224324982, 220.77925043190442, 196.76493264105017, 175.31662279234038, 156.0044839325404, 138.73983004230124, 123.42064612625474, 109.82713394836259, 97.76534468972267, 87.06061858367781, 77.56000002944572, 69.1280780096311, 61.64250263640252, 54.99473044877554, 49.091182970515476, 43.84634004556388, 39.184136917167976, 35.03619319797924, 31.347205894128976, 28.06346770557137, 25.139117042424758, 22.53420773366429, 20.214205433283347, 18.144318026099942, 16.299965972298878, 14.652633628829891, 13.184271405688083, 11.870540177313893, 10.697057141915716, 9.64778948429609, 8.709338689612677, 7.871268012862094; //Kern->SetPulseCurrent( VectorXr::LinSpaced( 1, 10, 200 ) ); // nbins, low, high Kern->SetPulseCurrent( I ); // nbins, low, high //VectorXr interfaces = VectorXr::LinSpaced( 41, .5, 45.5 ); // nlay, low, high //VectorXr interfaces = VectorXr::LinSpaced( 61, .5, 45.5 ); // nlay, low, high VectorXr interfaces = VectorXr::LinSpaced( 2, .5, 45.5 ); // nlay, low, high Real thick = .1; for (int ilay=1; ilaySetDepthLayerInterfaces( interfaces ); // nlay, low, high // We could, I suppose, take the earth model in here? For non-linear that // may be more natural to work with? std::vector tx = {std::string("Coil 1")}; std::vector rx = {std::string("Coil 2")}; Kern->CalculateK0( tx, rx, true ); // 3rd argument is vtk output std::ofstream dout = std::ofstream(std::string("Rx-")+std::string(argv[3])+std::string(".dat")); dout << "# Transmitters: "; for (auto lp : tx) { dout << lp << "\t"; } dout << "\n# Receivers: "; for (auto lp : rx) { dout << lp << "\t"; } dout << "\n# Tolerance: " << tol << std::endl; dout << interfaces.transpose() << std::endl; dout << I.transpose() << std::endl; dout << "#real\n"; dout << Kern->GetKernel().real() << std::endl; dout << "#imag\n"; dout << Kern->GetKernel().imag() << std::endl; dout.close(); std::ofstream out = std::ofstream(std::string("Rx-")+std::string(argv[2])+std::string(".yaml")); //std::ofstream out = std::ofstream(std::string("k-coincident.yaml")); out << *Kern; out.close(); }