// ===========================================================================
//
// Filename: bicgstab.h
//
// Description:
//
// Version: 0.0
// Created: 10/27/2009 03:15:06 PM
// Revision: none
// Compiler: g++ (c++)
//
// Author: Trevor Irons (ti)
//
// Organisation: Colorado School of Mines (CSM)
// United States Geological Survey (USGS)
//
// Email: tirons@mines.edu, tirons@usgs.gov
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// ===========================================================================
#pragma once
#ifndef BICGSTAB_INC
#define BICGSTAB_INC
#include
#include
#ifdef CHOLMODPRECONDITION
#include
#endif // CHOLMODPRECONDITION
//#include "unsupported/Eigen/IterativeSolvers"
//#include
#include
#include
#include
#include
#include
#include "timer.h"
using namespace Eigen;
using namespace Lemma;
//typedef Eigen::VectorXcd VectorXcr;
typedef Eigen::SparseMatrix SparseMat;
// On Input
// A = Matrix
// B = Right hand side
// X = initial guess, and solution
// maxit = maximum Number of iterations
// tol = error tolerance
// On Output
// X real solution vector
// errorn = Real error norm
int bicgstab(const SparseMat &A, const SparseMat &M, const VectorXcr &b, VectorXcr &x,
int &max_it, Real &tol, Real &errorn, int &iter_done,
const bool& banner = true) {
Complex omega, rho, rho_1, alpha, beta;
Real bnrm2, eps, errmin;
int n, iter; //, istat;
// Determine size of system and init vectors
n = x.size();
VectorXcr r(n);
VectorXcr r_tld(n);
VectorXcr p(n);
VectorXcr v(n);
VectorXcr p_hat(n);
VectorXcr s(n);
VectorXcr s_hat(n);
VectorXcr t(n);
VectorXcr xmin(n);
if (banner) {
std::cout << "Start BiCGStab, memory needed: "
<< (sizeof(Complex)*(9+2)*n/(1024.*1024*1024)) << " [Gb]\n";
}
// Initialise
iter_done = 0;
v.setConstant(0.); // not necessary I don't think
t.setConstant(0.);
eps = 1e-100;
bnrm2 = b.norm();
if (bnrm2 == 0) {
x.setConstant(0.0);
errorn = 0;
std::cerr << "Trivial case of Ax = b, where b is 0\n";
return (0);
}
// If there is an initial guess
if ( x.norm() ) {
r = b - A.selfadjointView()*x;
//r = b - A*x;
} else {
r = b;
}
errorn = r.norm() / bnrm2;
omega = 1.;
r_tld = r;
errmin = 1e30;
// Get down to business
for (iter=0; iter 0) {
beta = (rho/rho_1) * (alpha/omega);
p = r.array() + beta*(p.array()-omega*v.array()).array();
} else {
p = r;
}
// Use pseudo inverse to get approximate answer
//#pragma omp sections
p_hat = M*p;
//v = A*p_hat; // TODO double check
v = A.selfadjointView()*p_hat; // TODO double check
alpha = rho / r_tld.dot(v);
s = r.array() - alpha*v.array();
errorn = s.norm()/bnrm2;
if (errorn < tol && iter > 1) {
x.array() += alpha*p_hat.array();
return (0);
}
s_hat = M*s;
t = A.selfadjointView()*s_hat;
//t = A*s_hat;
omega = t.dot(s) / t.dot(t);
x.array() += alpha*p_hat.array() + omega*s_hat.array();
r = s.array() - omega*t.array();
errorn = r.norm() / bnrm2;
iter_done = iter;
if (errorn < errmin) {
// remember the model with the smallest norm
errmin = errorn;
xmin = x;
}
if ( errorn <= tol ) return (0);
if ( abs(omega) < eps ) return (0);
rho_1 = rho;
}
return (0);
}
template
bool preconditionedBiCGStab(const SparseMat &A, const Preconditioner &M,
const Ref< VectorXcr const > b,
Ref x,
const int &max_it, const Real &tol,
Real &errorn, int &iter_done) {
Complex omega, rho, rho_1, alpha, beta;
Real bnrm2, eps;
int n, iter;
Real tol2 = tol*tol;
// Determine size of system and init vectors
n = x.size();
VectorXcd r(n);
VectorXcd r_tld(n);
VectorXcd p(n);
VectorXcd s(n);
VectorXcd s_hat(n);
VectorXcd p_hat(n);
VectorXcd v = VectorXcr::Zero(n);
VectorXcd t = VectorXcr::Zero(n);
//std::cout << "Start BiCGStab, memory needed: "
// << (sizeof(Complex)*(8+2)*n/(1024.*1024)) / (1024.) << " [Gb]\n";
// Initialise
iter_done = 0;
eps = 1e-100;
bnrm2 = b.squaredNorm();
if (bnrm2 == 0) {
x.setConstant(0.0);
errorn = 0;
std::cerr << "Trivial case of Ax = b, where b is 0\n";
return (false);
}
// If there is an initial guess
if ( x.squaredNorm() ) {
r = b - A.selfadjointView()*x;
} else {
r = b;
}
errorn = r.squaredNorm() / bnrm2;
omega = 1.;
r_tld = r;
// Get down to business
for (iter=0; iter 0) {
beta = (rho/rho_1) * (alpha/omega);
p = r + beta*(p-omega*v);
} else {
p = r;
}
p_hat = M.solve(p);
v.noalias() = A.selfadjointView()*p_hat;
alpha = rho / r_tld.dot(v);
s = r - alpha*v;
errorn = s.squaredNorm()/bnrm2;
if (errorn < tol2 && iter > 1) {
x = x + alpha*p_hat;
errorn = std::sqrt(errorn);
return (true);
}
s_hat = M.solve(s);
t.noalias() = A.selfadjointView()*s_hat;
omega = t.dot(s) / t.dot(t);
x += alpha*p_hat + omega*s_hat;
r = s - omega*t;
errorn = r.squaredNorm() / bnrm2;
iter_done = iter;
if ( errorn <= tol2 || abs(omega) < eps) {
errorn = std::sqrt(errorn);
return (true);
}
rho_1 = rho;
}
return (false);
}
template
bool preconditionedSCBiCG(const SparseMat &A, const Preconditioner &M,
const Ref< VectorXcr const > b,
Ref x,
const int &max_iter, const Real &tol,
Real &errorn, int &iter_done) {
Real resid;
VectorXcr p, z, q;
Complex alpha, beta, rho, rho_1;
Real normb = b.norm( );
VectorXcr r = b - A*x;
if (normb == 0.0) normb = 1;
if ((resid = r.norm( ) / normb) <= tol) {
errorn = resid;
iter_done = 0;
return 0;
}
for (int i = 1; i <= max_iter; i++) {
z = M.solve(r);
rho = r.dot(z);
if (i == 1) p = z;
else {
beta = rho / rho_1;
p = z + beta * p;
}
q = A*p;
alpha = rho / p.dot(q);
x += alpha * p;
r -= alpha * q;
std::cout << "resid\t" << resid << std::endl;
if ((resid = r.norm( ) / normb) <= tol) {
errorn = resid;
iter_done = i;
return 0;
}
rho_1 = rho;
}
errorn = resid;
return (false);
}
/** \internal Low-level conjugate gradient algorithm
* \param mat The matrix A
* \param rhs The right hand side vector b5
* \param x On input and initial solution, on output the computed solution.
* \param precond A preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters On input the max number of iteration, on output the number of performed iterations.
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
*/
template
EIGEN_DONT_INLINE
void conjugateGradient(const SparseMat& mat, const Rhs& rhs, Dest& x,
const Preconditioner& precond, int& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
using std::abs;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix VectorType;
RealScalar tol = tol_error;
int maxIters = iters;
int n = mat.cols();
VectorType residual = rhs - mat.selfadjointView() * x; //initial residual
RealScalar rhsNorm2 = rhs.squaredNorm();
if(rhsNorm2 == 0)
{
x.setZero();
iters = 0;
tol_error = 0;
return;
}
RealScalar threshold = tol*tol*rhsNorm2;
RealScalar residualNorm2 = residual.squaredNorm();
if (residualNorm2 < threshold)
{
iters = 0;
tol_error = sqrt(residualNorm2 / rhsNorm2);
return;
}
VectorType p(n);
p = precond.solve(residual); //initial search direction
VectorType z(n), tmp(n);
RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
int i = 0;
while(i < maxIters)
{
tmp.noalias() = mat.selfadjointView() * p; // the bottleneck of the algorithm
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
x += alpha * p; // update solution
residual -= alpha * tmp; // update residue
residualNorm2 = residual.squaredNorm();
if(residualNorm2 < threshold)
break;
z = precond.solve(residual); // approximately solve for "A z = residual"
RealScalar absOld = absNew;
absNew = numext::real(residual.dot(z)); // update the absolute value of r
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
p = z + beta * p; // update search direction
i++;
}
tol_error = sqrt(residualNorm2 / rhsNorm2);
iters = i;
}
// // Computes implicit
// VectorXcr implicitDCInvBPhi (const SparseMat& D, const SparseMat& C,
// const SparseMat& B, const SparseMat& MC,
// const VectorXcr& Phi, Real& tol,
// int& max_it) {
// int iter_done(0);
// Real errorn(0);
// VectorXcr b = B*Phi;
// VectorXcr y = VectorXcr::Zero(C.rows()) ; // = C^1*b;
// bicgstab(C, MC, b, y, max_it, tol, errorn, iter_done, false);
// //std::cout << "Temp " << errorn << std::endl;
// return D*y;
// }
// Computes implicit
VectorXcr implicitDCInvBPhi (const SparseMat& D, const SparseMat& C,
const VectorXcr& ioms, const SparseMat& MC,
const VectorXcr& Phi, Real& tol,
int& max_it) {
int iter_done(0);
Real errorn(0);
VectorXcr b = (ioms).asDiagonal() * (D.transpose()*Phi);
VectorXcr y = VectorXcr::Zero(C.rows()) ; // = C^1*b;
bicgstab(C, MC, b, y, max_it, tol, errorn, iter_done, false);
//std::cout << "Temp " << errorn << std::endl;
max_it = iter_done;
return D*y;
}
// Computes implicit
template
VectorXcr implicitDCInvBPhi2 (const SparseMat& D, const SparseMat& C,
const Ref ioms, const Preconditioner& solver,
const Ref Phi, Real& tol,
int& max_it) {
VectorXcr b = (ioms).asDiagonal() * (D.transpose()*Phi);
VectorXcr y = VectorXcr::Zero(C.rows()) ; // = C^1*b;
// Home Made
//int iter_done(0);
//Real errorn(0);
//preconditionedBiCGStab(C, solver, b, y, max_it, tol, errorn, iter_done); //, false); // Jacobi M
//max_it = iter_done;
// Eigen BiCGStab
Eigen::BiCGSTAB > BiCG;
BiCG.compute( C ); // TODO move this out of this loop!
y = BiCG.solve(b);
max_it = BiCG.iterations();
tol = BiCG.error();
// Direct
/*
std::cout << "Computing LLT" << std::endl;
Eigen::SimplicialLLT, Eigen::Upper, Eigen::AMDOrdering > LLT;
LLT.compute(C);
max_it = 1;
std::cout << "Computed LLT" << std::endl;
y = LLT.solve(b);
*/
return D*y;
}
// Computes implicit
//template
template < typename Solver >
inline VectorXcr implicitDCInvBPhi3 (const SparseMat& D, const Solver& solver,
const Ref ioms,
const Ref Phi, Real& tol,
int& max_it) {
VectorXcr b = (ioms).asDiagonal() * (D.transpose()*Phi);
VectorXcr y = solver.solve(b);
//max_it = 0;
max_it = solver.iterations();
//errorn = solver.error();
return D*y;
}
// // Simple extraction of indices in idx into reduceed array x1
// void vmap( const Ref x0, Ref x1, const std::vector& idx ) {
// for (unsigned int ii=0; ii x0, const std::vector& idx ) {
VectorXcr x1 = VectorXcr::Zero( idx.size() );
for (unsigned int ii=0; ii x0, const Ref x1, const std::vector& idx ) {
for (unsigned int ii=0; ii
int implicitbicgstab(//const SparseMat& D,
//const SparseMat& C,
const Ref< Eigen::SparseMatrix const > D,
const std::vector& idx,
const Ref< VectorXcr const > ioms,
const Ref< VectorXcr const > rhs,
Ref phi,
CSolver& solver,
int &max_it, const Real &tol, Real &errorn, int &iter_done, ofstream& logio) {
logio << "using the preconditioned implicit solver" << std::endl;
Complex omega, rho, rho_1, alpha, beta;
Real tol2;
int iter, max_it2, max_it1;
// Look at reduced problem
VectorXcr rhs2 = vmap(rhs, idx);
VectorXcr phi2 = vmap(phi, idx);
// Determine size of system and init vectors
int n = idx.size(); // was phi.size();
VectorXcr r(n);
VectorXcr r_tld(n);
VectorXcr p(n);
VectorXcr s(n);
VectorXcr v = VectorXcr::Zero(n);
VectorXcr t = VectorXcr::Zero(n);
// TODO, refigure for implicit large system
// std::cout << "Start BiCGStab, memory needed: "
// << (sizeof(Complex)*(9+2)*n/(1024.*1024*1024)) << " [Gb]\n";
// Initialise
iter_done = 0;
Real eps = 1e-100;
Real bnrm2 = rhs.norm();
if (bnrm2 == 0) {
phi.setConstant(0.0);
errorn = 0;
std::cerr << "Trivial case of Ax = b, where b is 0\n";
return (0);
}
// If there is an initial guess
if ( phi.norm() ) {
tol2 = tol;
max_it2 = 50000;
//r = rhs - implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2);
//r = rhs - implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2);
r = rhs2 - vmap( implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2), idx );
} else {
r = vmap(rhs, idx);
}
jsw_timer timer;
errorn = r.norm() / bnrm2;
omega = 1.;
r_tld = r;
Real errornold = 1e14;
// Get down to business
for (iter=0; iter 0) {
beta = (rho/rho_1) * (alpha/omega);
p = r.array() + beta*(p.array()-omega*v.array()).array();
} else {
p = r;
}
tol2 = tol;
max_it2 = 500000;
//v = implicitDCInvBPhi2(D, C, ioms, solver, p, tol2, max_it2);
ivmap(phi, p, idx);
v = vmap(implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2), idx);
alpha = rho / r_tld.dot(v);
s = r.array() - alpha*v.array();
errorn = s.norm()/bnrm2;
if (errorn < tol && iter > 1) {
phi2.array() += alpha*p.array();
ivmap( phi, phi2, idx );
return (0);
}
tol2 = tol;
max_it1 = 500000;
//t = implicitDCInvBPhi2(D, C, ioms, solver, s, tol2, max_it1);
//t = implicitDCInvBPhi3(D, solver, ioms, s, tol2, max_it1);
ivmap(phi, s, idx);
t = vmap(implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it1), idx);
omega = t.dot(s) / t.dot(t);
r = s.array() - omega*t.array();
errorn = r.norm() / bnrm2;
iter_done = iter;
if (errorn <= tol) {
ivmap( phi, phi2, idx );
return (0);
}
if (abs(omega) < eps) {
ivmap( phi, phi2, idx );
return (0);
}
rho_1 = rho;
logio << "iteration " << std::setw(3) << iter
<< " errorn " << std::setw(6) << std::setprecision(4) << std::scientific << errorn
//<< "\timplicit iterations " << std::setw(5) << max_it1+max_it2
<< " time " << std::setw(6) << std::fixed << std::setprecision(2) << timer.end()/60. << " [m] "
<< max_it2+max_it2 << " iterations " << std::endl;
// Check to see how progress is going
if (errornold - errorn < 0) {
logio << "Irregular non-monotonic (negative) convergence. Recommend restart. \n";
ivmap( phi, phi2, idx );
return (2);
}
/*
if (errornold - errorn < 1e-14) {
logio << "not making any progress. Giving up\n";
return (1);
}
*/
//std::cout << "|| p-s ||" << (alpha*p - omega*s).norm() << std::endl;
// only update phi if good things are happening
phi2.array() += alpha*p.array() + omega*s.array();
errornold = errorn;
}
ivmap( phi, phi2, idx );
return (0);
}
// On Input
// A = Matrix
// B = Right hand side
// X = initial guess, and solution
// maxit = maximum Number of iterations
// tol = error tolerance
// On Output
// X real solution vector
// errorn = Real error norm
template < typename Solver >
int implicitbicgstab_ei(const SparseMat& D,
const Ref< VectorXcr const > ioms,
const Ref< VectorXcr const > rhs,
Ref phi,
Solver& solver,
int &max_it, const Real &tol, Real &errorn, int &iter_done, ofstream& logio) {
logio << "using the preconditioned Eigen implicit solver" << std::endl;
Complex omega, rho, rho_1, alpha, beta;
Real tol2;
int iter, max_it2,max_it1;
// Determine size of system and init vectors
int n = phi.size();
VectorXcr r(n);
VectorXcr r_tld(n);
VectorXcr p(n);
VectorXcr v(n);
VectorXcr s(n);
VectorXcr t(n);
// Initialise
iter_done = 0;
Real eps = 1e-100;
Real bnrm2 = rhs.norm();
if (bnrm2 == 0) {
phi.setConstant(0.0);
errorn = 0;
std::cerr << "Trivial case of Ax = b, where b is 0\n";
return (0);
}
// If there is an initial guess
if ( phi.norm() ) {
tol2 = tol;
max_it2 = 50000;
r = rhs - implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2);
} else {
r = rhs;
}
jsw_timer timer;
errorn = r.norm() / bnrm2;
omega = 1.;
r_tld = r;
Real errornold = 1e14;
// Get down to business
for (iter=0; iter 0) {
beta = (rho/rho_1) * (alpha/omega);
p = r.array() + beta*(p.array()-omega*v.array()).array();
} else {
p = r;
}
tol2 = tol;
max_it2 = 500000;
v = implicitDCInvBPhi3(D, solver, ioms, p, tol2, max_it2);
max_it2 = solver.iterations();
alpha = rho / r_tld.dot(v);
s = r.array() - alpha*v.array();
errorn = s.norm()/bnrm2;
if (errorn < tol && iter > 1) {
phi.array() += alpha*p.array();
return (0);
}
tol2 = tol;
max_it1 = 500000;
t = implicitDCInvBPhi3(D, solver, ioms, s, tol2, max_it1);
max_it1 = solver.iterations();
omega = t.dot(s) / t.dot(t);
r = s.array() - omega*t.array();
errorn = r.norm() / bnrm2;
iter_done = iter;
if (errorn <= tol ) return (0);
if (abs(omega) < eps) return (0);
rho_1 = rho;
logio << "iteration " << std::setw(4) << iter
<< "\terrorn " << std::setw(6) << std::setprecision(4) << std::scientific << errorn
<< "\timplicit iterations " << std::setw(5) << max_it1+max_it2
<< "\ttime " << std::setw(10) << std::fixed << std::setprecision(2) << timer.end() << std::endl;
// Check to see how progress is going
if (errornold - errorn < 0) {
logio << "irregular (negative) convergence. Try again? \n";
return (2);
}
// only update phi if good things are happening
phi.array() += alpha*p.array() + omega*s.array();
errornold = errorn;
}
return (0);
}
// On Input
// A = Matrix
// B = Right hand side
// X = initial guess, and solution
// maxit = maximum Number of iterations
// tol = error tolerance
// On Output
// X real solution vector
// errorn = Real error norm
int implicitbicgstabnt(const SparseMat& D,
const SparseMat& C,
const VectorXcr& ioms,
const SparseMat& MC,
Eigen::Ref< VectorXcr > rhs,
VectorXcr& phi,
int &max_it, Real &tol, Real &errorn, int &iter_done) {
Complex omega, rho, rho_1, alpha, beta;
Real errmin, tol2;
int iter, max_it2;
// // Cholesky decomp
// SparseLLT, Cholmod>
// CholC(SparseMatrix (C.real()) );
// if(!CholC.succeeded()) {
// std::cerr << "decomposiiton failed\n";
// return EXIT_FAILURE;
// }
// Determine size of system and init vectors
int n = phi.size();
VectorXcr r(n);
VectorXcr r_tld(n);
VectorXcr p(n);
VectorXcr v(n);
//VectorXcr p_hat(n);
VectorXcr s(n);
//VectorXcr s_hat(n);
VectorXcr t(n);
VectorXcr xmin(n);
// TODO, refigure for implicit large system
// std::cout << "Start BiCGStab, memory needed: "
// << (sizeof(Complex)*(9+2)*n/(1024.*1024*1024)) << " [Gb]\n";
// Initialise
iter_done = 0;
v.setConstant(0.); // not necessary I don't think
t.setConstant(0.);
Real eps = 1e-100;
Real bnrm2 = rhs.norm();
if (bnrm2 == 0) {
phi.setConstant(0.0);
errorn = 0;
std::cerr << "Trivial case of Ax = b, where b is 0\n";
return (0);
}
// If there is an initial guess
if ( phi.norm() ) {
//r = rhs - A*phi;
tol2 = tol;
max_it2 = 50000;
std::cout << "Initial guess " << std::endl;
r = rhs - implicitDCInvBPhi(D, C, ioms, MC, phi, tol2, max_it2);
//r = rhs - implicitDCInvBPhi (D, C, B, CholC, phi, tol2, max_it2);
} else {
r = rhs;
}
errorn = r.norm() / bnrm2;
//std::cout << "Initial |r| " << r.norm() << "\t" << errorn<< std::endl;
omega = 1.;
r_tld = r;
errmin = 1e30;
Real errornold = 1e6;
// Get down to business
for (iter=0; iter 0) {
beta = (rho/rho_1) * (alpha/omega);
p = r.array() + beta*(p.array()-omega*v.array()).array();
} else {
p = r;
}
// Use pseudo inverse to get approximate answer
//p_hat = p;
tol2 = std::max(1e-4*errorn, tol);
tol2 = tol;
max_it2 = 500000;
//v = A*p_hat;
v = implicitDCInvBPhi(D, C, ioms, MC, p, tol2, max_it2);
//v = implicitDCInvBPhi(D, C, B, CholC, p, tol2, max_it2);
alpha = rho / r_tld.dot(v);
s = r.array() - alpha*v.array();
errorn = s.norm()/bnrm2;
if (errorn < tol && iter > 1) {
phi.array() += alpha*p.array();
return (0);
}
// s_hat = M*s;
//tol2 = tol;
tol2 = std::max(1e-4*errorn, tol);
tol2 = tol;
max_it2 = 50000;
// t = A*s_hat;
t = implicitDCInvBPhi(D, C, ioms, MC, s, tol2, max_it2);
//t = implicitDCInvBPhi(D, C, B, CholC, s, tol2, max_it2);
omega = t.dot(s) / t.dot(t);
phi.array() += alpha*p.array() + omega*s.array();
r = s.array() - omega*t.array();
errorn = r.norm() / bnrm2;
iter_done = iter;
if (errorn < errmin) {
// remember the model with the smallest norm
errmin = errorn;
xmin = phi;
}
if (errorn <= tol ) return (0);
if (abs(omega) < eps) return (0);
rho_1 = rho;
std::cout << "iteration " << std::setw(4) << iter << "\terrorn " << std::setw(6) << std::scientific << errorn
<< "\timplicit iterations " << std::setw(5) << max_it2 << std::endl;
if (errornold - errorn < 1e-14) {
std::cout << "not making any progress. Giving up\n";
return (2);
}
errornold = errorn;
}
return (0);
}
#endif // ----- #ifndef BICGSTAB_INC -----
//int bicgstab(const SparseMat &A, Eigen::SparseLU< Eigen::SparseMatrix ,