Surface NMR forward modelling
Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

plotkernel.py 1.7KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. import sys
  4. from pylab import meshgrid
  5. from matplotlib.colors import LightSource
  6. from matplotlib.ticker import ScalarFormatter
  7. from matplotlib.ticker import MaxNLocator
  8. from matplotlib.ticker import AutoMinorLocator
  9. from matplotlib.ticker import LogLocator
  10. kf = open(sys.argv[1])
  11. ifaces = np.array( kf.readline().split(), dtype=np.float )
  12. q = np.array( kf.readline().split(), dtype=np.float )
  13. q = np.append( q, (q[-1]+q[-2]) ) # for pcolor mesh
  14. Y,X = meshgrid( ifaces, q )
  15. K = 1e9*np.loadtxt(sys.argv[1], comments="#", skiprows=2)
  16. nx, ny = np.shape(K)
  17. fig = plt.figure( )
  18. ax1 = fig.add_axes( [.100,.125,.335,.775] )
  19. ax2 = fig.add_axes( [.465,.125,.335,.775] , sharex=ax1, sharey=ax1 )
  20. axcb = fig.add_axes( [.835,.125,.040,.775] )
  21. ccmap = "coolwarm" # RdBu
  22. # Real plot
  23. ax1.pcolormesh(X, Y, K[0:nx//2].T, cmap=ccmap, vmin=-np.max(np.abs(K)), vmax=np.max(np.abs(K)))
  24. ax1.set_ylim( ifaces[-1], ifaces[0] )
  25. ax1.set_xlim( q[-1], q[0] )
  26. ax1.set_xscale("log", nonposx='clip')
  27. ax1.minorticks_off()
  28. ax1.set_title(r"$\mathrm{Re} \left( \mathcal{K}_N^{1D} \right)$")
  29. ax1.xaxis.set_major_locator(LogLocator(base = 2.0))
  30. ax1.get_xaxis().set_major_formatter(ScalarFormatter())
  31. # imaginary
  32. im = ax2.pcolormesh(X, Y, K[nx//2:].T, cmap=ccmap, vmin=-np.max(np.abs(K)), vmax=np.max(np.abs(K)))
  33. plt.setp(ax2.get_yticklabels(), visible=False)
  34. cb = plt.colorbar(im, axcb)
  35. cb.set_label(r"$\overline{V}^{\left(0\right)}_N$ (nV)")
  36. ax1.set_ylabel("Depth (m)")
  37. ax1.set_xlabel(r"Pulse moment (A$\cdot$s)")
  38. ax2.set_xlabel(r"Pulse moment (A$\cdot$s)")
  39. ax2.set_title(r"$\mathrm{Im} \left( \mathcal{K}_N^{1D} \right)$")
  40. plt.suptitle("exp 0")
  41. plt.show()
  42. exit()