123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 |
- /* This file is part of Lemma, a geophysical modelling and inversion API.
- * More information is available at http://lemmasoftware.org
- */
-
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/.
- */
-
- /**
- * @file
- * @date 11/11/2016 01:47:25 PM
- * @author Trevor Irons (ti)
- * @email tirons@egi.utah.edu
- * @copyright Copyright (c) 2016, University of Utah
- * @copyright Copyright (c) 2016, Lemma Software, LLC
- * @copyright Copyright (c) 2008, Colorado School of Mines
- */
-
- #include "MerlinConfig.h"
- #include "KernelV0.h"
- #include "FieldPoints.h"
-
- namespace Lemma {
-
- // ==================== FRIEND METHODS =====================
-
- std::ostream &operator << (std::ostream &stream, const KernelV0 &ob) {
- stream << ob.Serialize() << "\n"; // End of doc ---
- return stream;
- }
-
- // ==================== LIFECYCLE =======================
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: KernelV0
- // Description: constructor (locked)
- //--------------------------------------------------------------------------------------
- KernelV0::KernelV0 (const ctor_key& key) : MerlinObject( key ) {
-
- } // ----- end of method KernelV0::KernelV0 (constructor) -----
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: KernelV0
- // Description: DeSerializing constructor (locked)
- //--------------------------------------------------------------------------------------
- KernelV0::KernelV0 (const YAML::Node& node, const ctor_key& key) : MerlinObject(node, key) {
-
- //node["PulseType"] = "FID";
- Larmor = node["Larmor"].as<Real>();
- Temperature = node["Temperature"].as<Real>();
- tol = node["tol"].as<Real>();
- minLevel = node["minLevel"].as<int>();
- maxLevel = node["maxLevel"].as<int>();
- Interfaces = node["Interfaces"].as<VectorXr>();
- Size = node["IntegrationSize"].as<Vector3r>();
- Origin = node["IntegrationOrigin"].as<Vector3r>();
-
- if (node["AlignWithAkvoData"]) {
- // Match pulse info with dataset
- AlignWithAkvoDataset( YAML::LoadFile( node["AlignWithAkvoData"].as<std::string>()));
- } else {
- // Read Pulse info direct from Kernel file
- PulseI = node["PulseI"].as<VectorXr>();
- Taup = node["Taup"].as<Real>();
- }
-
- if (node["SigmaModel"]) {
- if (node["SigmaModel"].Tag() == "LayeredEarthEM") {
- SigmaModel = LayeredEarthEM::DeSerialize(node["SigmaModel"]);
- } else {
- SigmaModel = LayeredEarthEM::DeSerialize( YAML::LoadFile( node["SigmaModel"].as<std::string>() ));
- }
- }
-
- if (node["Coils"]) {
- for ( auto coil : node["Coils"] ) {
- if ( coil.second.Tag() == "PolygonalWireAntenna" ) {
- TxRx[ coil.first.as<std::string>() ] = PolygonalWireAntenna::DeSerialize( coil.second );
- } else {
- TxRx[ coil.first.as<std::string>() ] =
- PolygonalWireAntenna::DeSerialize( YAML::LoadFile(coil.second.as<std::string>()) );
- }
- }
- }
-
- if (node["K0"]) {
- Kern = MatrixXcr::Zero( Interfaces.size()-1, PulseI.size() ).array() + 1.;
- for ( int ilay=0; ilay<Interfaces.size()-1; ++ilay ) {
- Kern.row(ilay) = node["K0"]["layer-" + to_string(ilay) ].as<VectorXcr>();
- }
- }
- } // ----- end of method KernelV0::KernelV0 (constructor) -----
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: NewSP()
- // Description: public constructor returing a shared_ptr
- //--------------------------------------------------------------------------------------
- std::shared_ptr< KernelV0 > KernelV0::NewSP() {
- return std::make_shared< KernelV0 >( ctor_key() );
- }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: ~KernelV0
- // Description: destructor (protected)
- //--------------------------------------------------------------------------------------
- KernelV0::~KernelV0 () {
-
- } // ----- end of method KernelV0::~KernelV0 (destructor) -----
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: Serialize
- //--------------------------------------------------------------------------------------
- YAML::Node KernelV0::Serialize ( ) const {
-
- YAML::Node node = MerlinObject::Serialize();
- node.SetTag( GetName() );
-
- // Coils Transmitters & Receivers
- if (!TxRx.empty()) {
- for ( auto txm : TxRx) {
- node["Coils"][txm.first] = txm.second->Serialize();
- }
- }
-
- // LayeredEarthEM
- if (SigmaModel != nullptr) {
- node["SigmaModel"] = SigmaModel->Serialize();
- }
-
- node["PulseType"] = "FID";
- node["Larmor"] = Larmor;
- node["Temperature"] = Temperature;
- node["tol"] = tol;
- node["minLevel"] = minLevel;
- node["maxLevel"] = maxLevel;
- node["Taup"] = Taup;
- node["PulseI"] = PulseI;
- node["Interfaces"] = Interfaces;
- node["IntegrationSize"] = Size;
- node["IntegrationOrigin"] = Origin;
-
- // TODO, use better matrix encapulation
- if (Kern.array().abs().any() > 1e-16) {
- for ( int ilay=0; ilay<Interfaces.size()-1; ++ilay ) {
- node["K0"]["layer-" + to_string(ilay) ] = static_cast<VectorXcr>(Kern.row(ilay));
- }
- }
- return node;
- } // ----- end of method KernelV0::Serialize -----
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: DeSerialize
- //--------------------------------------------------------------------------------------
- std::shared_ptr<KernelV0> KernelV0::DeSerialize ( const YAML::Node& node ) {
- if (node.Tag() != "KernelV0" ) {
- throw DeSerializeTypeMismatch( "KernelV0", node.Tag());
- }
- return std::make_shared< KernelV0 > ( node, ctor_key() );
- } // ----- end of method KernelV0::DeSerialize -----
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: AlignWithAkvoDataset
- //--------------------------------------------------------------------------------------
- void KernelV0::AlignWithAkvoDataset( const YAML::Node& node ) {
- if (node["processed"].as<std::string>().substr(0,4) == "Akvo") {
- std::cout << "Akvo file read\n";
- std::cout << node["processed"] << std::endl;
- }
- if (node["pulseType"].as<std::string>() == "FID") {
- std::cout << "FID pulse detected" << std::endl;
- PulseI = node["Pulses"]["Pulse 1"]["current"].as<VectorXr>();
- this->SetPulseDuration( node["pulseLength"][0].as<double>() );
- } else {
- std::cerr << "Pulse Type " << node["PulseType"] << "is not supported\n";
- }
- std::cout << "Finished with Akvo file read" << std::endl;
- }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: DeSerialize
- //--------------------------------------------------------------------------------------
- void KernelV0::CalculateK0 (const std::vector< std::string>& Tx,
- const std::vector<std::string >& Rx, bool vtkOutput ) {
- // Set up
- Larmor = SigmaModel->GetMagneticFieldMagnitude()*GAMMA; // in rad 2246.*2.*PI;
-
- // All EM calculations will share same field points
- cpoints = FieldPoints::NewSP();
- cpoints->SetNumberOfPoints(8);
- for (auto tx : Tx) {
- // Set up EMEarth
- EMEarths[tx] = EMEarth1D::NewSP();
- EMEarths[tx]->AttachWireAntenna(TxRx[tx]);
- EMEarths[tx]->AttachLayeredEarthEM(SigmaModel);
- EMEarths[tx]->AttachFieldPoints( cpoints );
- EMEarths[tx]->SetFieldsToCalculate(H);
- // TODO query for method, altough with flat antennae, this is fastest
- //EMEarths[tx]->SetHankelTransformMethod(FHTKEY201);
- EMEarths[tx]->SetHankelTransformMethod(ANDERSON801);
- EMEarths[tx]->SetTxRxMode(TX);
- TxRx[tx]->SetCurrent(1.);
- }
- for (auto rx : Rx) {
- if (EMEarths.count(rx)) {
- EMEarths[rx]->SetTxRxMode(TXRX);
- } else {
- EMEarths[rx] = EMEarth1D::NewSP();
- EMEarths[rx]->AttachWireAntenna(TxRx[rx]);
- EMEarths[rx]->AttachLayeredEarthEM(SigmaModel);
- EMEarths[rx]->AttachFieldPoints( cpoints );
- EMEarths[rx]->SetFieldsToCalculate(H);
- // TODO query for method, altough with flat antennae, this is fastest
- //EMEarths[rx]->SetHankelTransformMethod(FHTKEY201);
- EMEarths[rx]->SetHankelTransformMethod(ANDERSON801);
- EMEarths[rx]->SetTxRxMode(RX);
- TxRx[rx]->SetCurrent(1.);
- }
- }
-
- std::cout << "Calculating K0 kernel\n";
- Kern = MatrixXcr::Zero( Interfaces.size()-1, PulseI.size() );
- for (ilay=0; ilay<Interfaces.size()-1; ++ilay) {
- std::cout << "Layer " << ilay << "\tfrom " << Interfaces(ilay) <<" to "
- << Interfaces(ilay+1) << std::endl;
- Size(2) = Interfaces(ilay+1) - Interfaces(ilay);
- Origin(2) = Interfaces(ilay);
- IntegrateOnOctreeGrid( vtkOutput );
- }
- std::cout << "\nFinished KERNEL\n";
- }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: IntegrateOnOctreeGrid
- //--------------------------------------------------------------------------------------
- void KernelV0::IntegrateOnOctreeGrid( bool vtkOutput) {
-
- Vector3r cpos = Origin + Size/2.;
-
- VOLSUM = 0;
- nleaves = 0;
- if (!vtkOutput) {
- EvaluateKids( Size, 0, cpos, VectorXcr::Ones(PulseI.size()) );
- } else {
- #ifdef LEMMAUSEVTK
- vtkHyperOctree* oct = vtkHyperOctree::New();
- oct->SetDimension(3);
- oct->SetOrigin( Origin(0), Origin(1), Origin(2) );
- oct->SetSize( Size(0), Size(1), Size(2) );
- vtkHyperOctreeCursor* curse = oct->NewCellCursor();
- curse->ToRoot();
- EvaluateKids2( Size, 0, cpos, VectorXcr::Ones(PulseI.size()), oct, curse );
-
- for (int iq=0; iq<PulseI.size(); ++iq) {
- // Fill in leaf data
- vtkDoubleArray* kr = vtkDoubleArray::New();
- kr->SetNumberOfComponents(1);
- kr->SetName("Re($\\mathcal{K}_0$)");
- kr->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- vtkDoubleArray* ki = vtkDoubleArray::New();
- ki->SetNumberOfComponents(1);
- ki->SetName("Im($\\mathcal{K}_0$)");
- ki->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- vtkDoubleArray* km = vtkDoubleArray::New();
- km->SetNumberOfComponents(1);
- km->SetName("mod($\\mathcal{K}_0$)");
- km->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- vtkIntArray* kid = vtkIntArray::New();
- kid->SetNumberOfComponents(1);
- kid->SetName("ID");
- kid->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- vtkIntArray* kerr = vtkIntArray::New();
- kerr->SetNumberOfComponents(1);
- kerr->SetName("err");
- kerr->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- // Ht field
- vtkDoubleArray* htr = vtkDoubleArray::New();
- htr->SetNumberOfComponents(3);
- htr->SetName("Re($\\mathbf{\\mathcal{H}}_T$)");
- htr->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- vtkDoubleArray* hti = vtkDoubleArray::New();
- hti->SetNumberOfComponents(3);
- hti->SetName("Im($\\mathbf{\\mathcal{H}}_T$)");
- hti->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- // Hr field
- vtkDoubleArray* hrr = vtkDoubleArray::New();
- hrr->SetNumberOfComponents(3);
- hrr->SetName("Re($\\mathbf{\\mathcal{H}}_R$)");
- hrr->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- vtkDoubleArray* hri = vtkDoubleArray::New();
- hri->SetNumberOfComponents(3);
- hri->SetName("Im($\\mathbf{\\mathcal{H}}_R$)");
- hri->SetNumberOfTuples( oct->GetNumberOfLeaves() );
- //Real LeafVol(0);
- for (auto leaf : LeafDict) {
- kr->InsertTuple1( leaf.first, std::real(leaf.second(iq)) );
- ki->InsertTuple1( leaf.first, std::imag(leaf.second(iq)) );
- km->InsertTuple1( leaf.first, std::abs(leaf.second(iq)) );
- kid->InsertTuple1( leaf.first, leaf.first );
- //LeafVol += std::real(leaf.second);
- }
-
- for (auto leaf : LeafHt ) {
- htr->InsertTuple( leaf.first, leaf.second.real().data() );
- hti->InsertTuple( leaf.first, leaf.second.imag().data() );
- }
-
- for (auto leaf : LeafHr ) {
- hrr->InsertTuple( leaf.first, leaf.second.real().data() );
- hri->InsertTuple( leaf.first, leaf.second.imag().data() );
- }
-
- for (auto leaf : LeafDictIdx) {
- kerr->InsertTuple1( leaf.first, leaf.second );
- }
-
- auto kri = oct->GetLeafData()->AddArray(kr);
- auto kii = oct->GetLeafData()->AddArray(ki);
- auto kmi = oct->GetLeafData()->AddArray(km);
- auto kidi = oct->GetLeafData()->AddArray(kid);
- auto keri = oct->GetLeafData()->AddArray(kerr);
- auto khtr = oct->GetLeafData()->AddArray(htr);
- auto khti = oct->GetLeafData()->AddArray(hti);
- auto khrr = oct->GetLeafData()->AddArray(hrr);
- auto khri = oct->GetLeafData()->AddArray(hri);
-
- auto write = vtkXMLHyperOctreeWriter::New();
- //write.SetDataModeToAscii()
- write->SetInputData(oct);
- std::string fname = std::string("octree-") + to_string(ilay)
- + std::string("-") + to_string(iq) + std::string(".vto");
- write->SetFileName(fname.c_str());
- write->Write();
- write->Delete();
-
- oct->GetLeafData()->RemoveArray( kri );
- oct->GetLeafData()->RemoveArray( kii );
- oct->GetLeafData()->RemoveArray( kmi );
- oct->GetLeafData()->RemoveArray( kidi );
- oct->GetLeafData()->RemoveArray( keri );
- oct->GetLeafData()->RemoveArray( khtr );
- oct->GetLeafData()->RemoveArray( khti );
- oct->GetLeafData()->RemoveArray( khrr );
- oct->GetLeafData()->RemoveArray( khri );
-
- kerr->Delete();
- kid->Delete();
- kr->Delete();
- ki->Delete();
- km->Delete();
- htr->Delete();
- hti->Delete();
- hrr->Delete();
- hri->Delete();
-
- }
- curse->Delete();
- oct->Delete();
- #else
- throw std::runtime_error("IntegrateOnOctreeGrid with vtkOutput requires Lemma with VTK support");
- #endif
-
- }
- std::cout << "\nVOLSUM=" << VOLSUM << "\tActual=" << Size(0)*Size(1)*Size(2)
- << "\tDifference=" << VOLSUM - (Size(0)*Size(1)*Size(2)) << std::endl;
- }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: f
- //--------------------------------------------------------------------------------------
- VectorXcr KernelV0::f( const Vector3r& r, const Real& volume, const Vector3cr& Ht, const Vector3cr& Hr ) {
-
- // Compute the elliptic fields
- Vector3r B0hat = SigmaModel->GetMagneticFieldUnitVector();
- Vector3r B0 = SigmaModel->GetMagneticField();
-
- // Elliptic representation
- EllipticB EBT = EllipticFieldRep(MU0*Ht, B0hat);
- EllipticB EBR = EllipticFieldRep(MU0*Hr, B0hat);
-
- // Compute Mn0
- Vector3r Mn0 = ComputeMn0(1.0, B0);
- Real Mn0Abs = Mn0.norm();
- //std::cout << "Mn0\t" << Mn0.transpose() << std::endl;
-
- // Compute phase delay
- // TODO add transmiiter current phase and delay induced apparent time phase!
- Complex PhaseTerm = EBR.bhat.dot(EBT.bhat) + Complex(0, (B0hat.dot(EBR.bhat.cross(EBT.bhat))));
- Complex ejztr = std::exp(Complex(0, EBR.zeta + EBT.zeta));
-
- // Calcuate vector of all responses
- VectorXcr F = VectorXcr::Zero( PulseI.size() );
- for (int iq=0; iq<PulseI.size(); ++iq) {
- // Compute the tipping angle
- Real sintheta = std::sin(0.5*GAMMA*PulseI(iq)*Taup*(EBT.alpha-EBT.beta));
- F(iq) = -volume*Complex(0,Larmor)*Mn0Abs*(EBR.alpha+EBR.beta)*ejztr*sintheta*PhaseTerm;
- }
- return F;
- }
-
- // //--------------------------------------------------------------------------------------
- // // Class: KernelV0
- // // Method: ComputeV0Cell
- // //--------------------------------------------------------------------------------------
- // Complex KernelV0::ComputeV0Cell(const EllipticB& EBT, const EllipticB& EBR,
- // const Real& sintheta, const Real& phase, const Real& Mn0Abs,
- // const Real& vol) {
- // // earth response of receiver adjoint field
- // Vector3r B0hat = SigmaModel->GetMagneticFieldUnitVector();
- // Complex ejztr = std::exp(Complex(0, EBR.zeta + EBT.zeta));
- // Complex PhaseTerm = EBR.bhat.dot(EBT.bhat) + (B0hat.dot(EBR.bhat.cross(EBT.bhat) ));
- // return -vol*Complex(0,Larmor)*Mn0Abs*(EBR.alpha+EBR.beta)*ejztr*sintheta*PhaseTerm;
- // }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: ComputeV0Cell
- //--------------------------------------------------------------------------------------
- Vector3r KernelV0::ComputeMn0(const Real& Porosity, const Vector3r& B0) {
- Real chi_n = NH2O*((GAMMA*GAMMA*HBAR*HBAR)/(4.*KB*Temperature));
- return chi_n*Porosity*B0;
- }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: ComputeV0Cell
- //--------------------------------------------------------------------------------------
- EllipticB KernelV0::EllipticFieldRep (const Vector3cr& B, const Vector3r& B0hat) {
- // This all follows Weichman et al., 2000.
- // There are some numerical stability issues that arise when the two terms in the beta
- // formulation are nearly equivalent. The current formulation will result in a null-valued
- // beta, or can underflow. However, this does not entirely recreate the true value of B perp.
- // Error is checked to be below 1%, but reformulating for numeric stability may be welcome
- EllipticB ElipB = EllipticB();
- Vector3cr Bperp = B - B0hat.dot(B)*B0hat;
- Real BperpNorm = Bperp.norm();
- // These two are equivalent
- //Complex Bp2 = Bperp.transpose() * Bperp;
- Complex Bp2 = Bperp.conjugate().dot(Bperp);
- VectorXcr iB0 = Complex(0,1)*B0hat.cast<Complex>().array();
- ElipB.eizt = std::sqrt(Bp2 / std::abs(Bp2));
- ElipB.alpha = INVSQRT2*std::sqrt(BperpNorm*BperpNorm + std::abs(Bp2));
- //ElipB.beta = std::copysign(1, std::real(iB0.dot( Bperp.cross(Bperp.conjugate())) )) *
- ElipB.beta = sgn( std::real(iB0.dot( Bperp.cross(Bperp.conjugate())) )) *
- (INVSQRT2*std::sqrt(BperpNorm*BperpNorm - std::abs(Bp2)));
- // Correct underflow in beta calculation
- // could use cerrno instead...
- // http://en.cppreference.com/w/cpp/numeric/math/sqrt
- if (ElipB.beta != ElipB.beta) ElipB.beta = 0;
- ElipB.bhat = ((Real)1./ElipB.alpha)*(((Real)1./ElipB.eizt)*Bperp.array()).real().array();
- ElipB.bhatp = B0hat.cross(ElipB.bhat);
- ElipB.zeta = std::real(std::log(ElipB.eizt)/Complex(0,1));
- /* as an error check decomposed field - computed actual */
- // Vector3cr Bperp2 = ElipB.eizt * (ElipB.alpha * ElipB.bhat
- // + (Complex(0,1) * ElipB.beta * ElipB.bhatp) );
- // ElipB.err = (Bperp-Bperp2).norm();
- // if (ElipB.err > .01*Bperp.norm() ) { // 1% error
- // std::cout << "Elip error\n";
- // Real Beta2 = sgn( std::real(iB0.dot( Bperp.cross(Bperp.conjugate())) )) *
- // (INVSQRT2*std::sqrt(BperpNorm*BperpNorm - std::abs(Bp2)));
- // Vector3cr Bperp3 = ElipB.eizt * (ElipB.alpha * ElipB.bhat
- // + (Complex(0,1) * Beta2 * ElipB.bhatp) );
- // std::cout << "Beta term0\t" << (INVSQRT2*std::sqrt(BperpNorm*BperpNorm - std::abs(Bp2))) << std::endl;
- // std::cout << "Beta term1\t" << BperpNorm*BperpNorm << "\t" << std::abs(Bp2) << std::endl;
- // std::cout << "Beta \t" << ElipB.beta << std::endl;
- // std::cout << "Beta2 \t" << Beta2 << std::endl;
- // std::cout << "Bperp \t" << Bperp.transpose() << std::endl;
- // std::cout << "Bperp2\t" << Bperp2.transpose() << std::endl;
- // std::cout << "Bperp3\t" << Bperp3.transpose() << std::endl;
- // std::cout << "err \t" << ElipB.err << std::endl;
- // }
- return ElipB;
- }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: EvaluateKids
- //--------------------------------------------------------------------------------------
- void KernelV0::EvaluateKids( const Vector3r& size, const int& level, const Vector3r& cpos,
- const VectorXcr& parentVal ) {
-
- std::cout << "\r" << (int)(1e2*VOLSUM/(Size[0]*Size[1]*Size[2])) << "\t" << nleaves;
- //std::cout.flush();
-
- // Next level step, interested in one level below
- // bitshift requires one extra, faster than, and equivalent to std::pow(2, level+1)
- Vector3r step = size.array() / (Real)(1 << (level+1) );
- Real vol = (step(0)*step(1)*step(2)); // volume of each child
-
- Vector3r pos = cpos - step/2.;
- Eigen::Matrix<Real, 8, 3> posadd = (Eigen::Matrix<Real, 8, 3>() <<
- 0, 0, 0,
- step[0], 0, 0,
- 0, step[1], 0,
- step[0], step[1], 0,
- 0, 0, step[2],
- step[0], 0, step[2],
- 0, step[1], step[2],
- step[0], step[1], step[2] ).finished();
-
- cpoints->ClearFields();
- for (int ichild=0; ichild<8; ++ichild) {
- Vector3r cp = pos; // Eigen complains about combining these
- cp += posadd.row(ichild);
- cpoints->SetLocation( ichild, cp );
- }
-
- Eigen::Matrix<Complex, 3, 8> Ht = Eigen::Matrix<Complex, 3, 8>::Zero();
- Eigen::Matrix<Complex, 3, 8> Hr = Eigen::Matrix<Complex, 3, 8>::Zero();
- for ( auto EMCalc : EMEarths ) {
-
- EMCalc.second->GetFieldPoints()->ClearFields();
- EMCalc.second->CalculateWireAntennaFields();
- switch (EMCalc.second->GetTxRxMode()) {
- case TX:
- Ht += EMCalc.second->GetFieldPoints()->GetHfield(0);
- break;
- case RX:
- Hr += EMCalc.second->GetFieldPoints()->GetHfield(0);
- break;
- case TXRX:
- Ht += EMCalc.second->GetFieldPoints()->GetHfield(0);
- Hr += EMCalc.second->GetFieldPoints()->GetHfield(0);
- break;
- default:
- break;
- }
- }
-
- MatrixXcr kvals(8, PulseI.size()); // individual kernel vals
- for (int ichild=0; ichild<8; ++ichild) {
- Vector3r cp = pos; // Eigen complains about combining these
- cp += posadd.row(ichild);
- kvals.row(ichild) = f(cp, vol, Ht.col(ichild), Hr.col(ichild));
- }
-
- VectorXcr ksum = kvals.colwise().sum(); // Kernel sum
- // Evaluate whether or not furthur splitting is needed
- if ( (((ksum - parentVal).array().abs() > tol).any() && level<maxLevel) || level < minLevel ) {
- // Not a leaf dive further in
- for (int ichild=0; ichild<8; ++ichild) {
- Vector3r cp = pos; // Eigen complains about combining these
- cp += posadd.row(ichild);
- EvaluateKids( size, level+1, cp, kvals.row(ichild) );
- }
- return; // not leaf
- }
- // implicit else, is a leaf
- Kern.row(ilay) += ksum;
- VOLSUM += 8.*vol;
- nleaves += 8; // reflects the number of kernel evaluations
- return; // is leaf
- }
-
- #ifdef LEMMAUSEVTK
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: EvaluateKids2 -- same as Evaluate Kids, but include VTK octree generation
- //--------------------------------------------------------------------------------------
- void KernelV0::EvaluateKids2( const Vector3r& size, const int& level, const Vector3r& cpos,
- const VectorXcr& parentVal, vtkHyperOctree* oct, vtkHyperOctreeCursor* curse) {
-
- std::cout << "\r" << (int)(1e2*VOLSUM/(Size[0]*Size[1]*Size[2])) << "\t" << nleaves;
- //std::cout.flush();
-
- // Next level step, interested in one level below
- // bitshift requires one extra, faster than, and equivalent to std::pow(2, level+1)
- Vector3r step = size.array() / (Real)(1 << (level+1) );
- Real vol = (step(0)*step(1)*step(2)); // volume of each child
-
- Vector3r pos = cpos - step/2.;
- Eigen::Matrix<Real, 8, 3> posadd = (Eigen::Matrix<Real, 8, 3>() <<
- 0, 0, 0,
- step[0], 0, 0,
- 0, step[1], 0,
- step[0], step[1], 0,
- 0, 0, step[2],
- step[0], 0, step[2],
- 0, step[1], step[2],
- step[0], step[1], step[2] ).finished();
-
- MatrixXcr kvals(8, PulseI.size()); // individual kernel vals
- cpoints->ClearFields();
- for (int ichild=0; ichild<8; ++ichild) {
- Vector3r cp = pos; // Eigen complains about combining these
- cp += posadd.row(ichild);
- cpoints->SetLocation( ichild, cp );
- }
-
- Eigen::Matrix<Complex, 3, 8> Ht = Eigen::Matrix<Complex, 3, 8>::Zero();
- Eigen::Matrix<Complex, 3, 8> Hr = Eigen::Matrix<Complex, 3, 8>::Zero();
- for ( auto EMCalc : EMEarths ) {
- //EMCalc->GetFieldPoints()->ClearFields();
- EMCalc.second->CalculateWireAntennaFields();
- switch (EMCalc.second->GetTxRxMode()) {
- case TX:
- Ht += EMCalc.second->GetFieldPoints()->GetHfield(0);
- break;
- case RX:
- Hr += EMCalc.second->GetFieldPoints()->GetHfield(0);
- break;
- case TXRX:
- Ht += EMCalc.second->GetFieldPoints()->GetHfield(0);
- Hr += EMCalc.second->GetFieldPoints()->GetHfield(0);
- break;
- default:
- break;
- }
- }
-
- for (int ichild=0; ichild<8; ++ichild) {
- Vector3r cp = pos; // Eigen complains about combining these
- cp += posadd.row(ichild);
- kvals.row(ichild) = f(cp, vol, Ht.col(ichild), Hr.col(ichild));
- }
-
- VectorXcr ksum = kvals.colwise().sum(); // Kernel sum
- // Evaluate whether or not furthur splitting is needed
- if ( (((ksum - parentVal).array().abs() > tol).any() && level<maxLevel) || level < minLevel ) {
- oct->SubdivideLeaf(curse);
- for (int ichild=0; ichild<8; ++ichild) {
- curse->ToChild(ichild);
- Vector3r cp = pos; // Eigen complains about combining these
- cp += posadd.row(ichild);
- /* Test for position via alternative means */
- /*
- Real p[3];
- GetPosition(curse, p);
- if ( (Vector3r(p) - cp).norm() > 1e-8 ) {
- std::cout << "ERROR @ nleaves" << nleaves << "\n" << cp[0] << "\t" << p[0] << "\t" << cp[1] << "\t" << p[1]
- << "\t" << cp[2] << "\t" << p[2] << "\t" << vol<< std::endl;
- throw std::runtime_error("doom");
- }
- */
- /* End of position test */
- EvaluateKids2( size, level+1, cp, kvals.row(ichild), oct, curse );
- curse->ToParent();
- }
- return; // not a leaf
- }
- /* just stuff with sum of the kids and don't subdivide */
- /*
- LeafDict[curse->GetLeafId()] = ksum/(8.*vol);
- LeafDictIdx[curse->GetLeafId()] = nleaves;
- */
- /* Alternatively, subdivide the VTK octree here and stuff the children to make better
- * visuals, but also 8x the storage...
- */
- oct->SubdivideLeaf(curse);
- for (int ichild=0; ichild<8; ++ichild) {
- curse->ToChild(ichild);
- LeafDict[curse->GetLeafId()] = ksum/(8.*vol);
- LeafHt[curse->GetLeafId()] = Ht.col(ichild);
- LeafHr[curse->GetLeafId()] = Hr.col(ichild);
- LeafDictIdx[curse->GetLeafId()] = nleaves;
- curse->ToParent();
- }
-
- Kern.row(ilay) += ksum;
- VOLSUM += 8*vol;
- nleaves += 8; // good reason to say 1 or 8 here...8 sounds better and reflects kernel evaluations
- return; // is a leaf
- }
-
- //--------------------------------------------------------------------------------------
- // Class: KernelV0
- // Method: GetPosition
- //--------------------------------------------------------------------------------------
- void KernelV0::GetPosition( vtkHyperOctreeCursor* Cursor, Real* p ) {
- Real ratio=1.0/(1<<(Cursor->GetCurrentLevel()));
- //step = ((Size).array() / std::pow(2.,Cursor->GetCurrentLevel()));
- p[0]=(Cursor->GetIndex(0)+.5)*ratio*this->Size[0]+this->Origin[0] ;//+ .5*step[0];
- p[1]=(Cursor->GetIndex(1)+.5)*ratio*this->Size[1]+this->Origin[1] ;//+ .5*step[1];
- p[2]=(Cursor->GetIndex(2)+.5)*ratio*this->Size[2]+this->Origin[2] ;//+ .5*step[2];
- }
-
- #endif
-
- } // ---- end of namespace Lemma ----
-
- /* vim: set tabstop=4 expandtab */
- /* vim: set filetype=cpp */
|