Surface NMR forward modelling
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

plotkernel.py 1.7KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. import sys
  4. from pylab import meshgrid
  5. from matplotlib.colors import LightSource
  6. from matplotlib.ticker import ScalarFormatter
  7. from matplotlib.ticker import MaxNLocator
  8. from matplotlib.ticker import AutoMinorLocator
  9. from matplotlib.ticker import LogLocator
  10. kf = open(sys.argv[1])
  11. ifaces = np.array( kf.readline().split(), dtype=np.float )
  12. q = np.array( kf.readline().split(), dtype=np.float )
  13. q = np.append( q, (q[-1]+q[-2]) ) # for pcolor mesh
  14. Y,X = meshgrid( ifaces, q )
  15. K = 1e9*np.loadtxt(sys.argv[1], comments="#", skiprows=2)
  16. nx, ny = np.shape(K)
  17. fig = plt.figure( )
  18. ax1 = fig.add_axes( [.100,.125,.335,.775] )
  19. ax2 = fig.add_axes( [.465,.125,.335,.775] , sharex=ax1, sharey=ax1 )
  20. axcb = fig.add_axes( [.835,.125,.040,.775] )
  21. ccmap = "seismic" # RdBu
  22. # Real plot
  23. ax1.pcolormesh(X, Y, K[0:nx//2].T, cmap=ccmap, vmin=-np.max(np.abs(K)), vmax=np.max(np.abs(K)))
  24. ax1.set_ylim( ifaces[-1], ifaces[0] )
  25. ax1.set_xlim( q[-1], q[0] )
  26. ax1.set_xscale("log", nonposx='clip')
  27. ax1.minorticks_off()
  28. ax1.set_title(r"$\mathrm{Re} \left( \mathcal{K}_N^{1D} \right)$")
  29. ax1.xaxis.set_major_locator(LogLocator(base = 2.0))
  30. ax1.get_xaxis().set_major_formatter(ScalarFormatter())
  31. # imaginary
  32. im = ax2.pcolormesh(X, Y, K[nx//2:].T, cmap=ccmap, vmin=-np.max(np.abs(K)), vmax=np.max(np.abs(K)))
  33. plt.setp(ax2.get_yticklabels(), visible=False)
  34. cb = plt.colorbar(im, axcb)
  35. cb.set_label(r"$\overline{V}^{\left(0\right)}_N$ (nV)")
  36. ax1.set_ylabel("Depth (m)")
  37. ax1.set_xlabel(r"Pulse moment (A$\cdot$s)")
  38. ax2.set_xlabel(r"Pulse moment (A$\cdot$s)")
  39. ax2.set_title(r"$\mathrm{Im} \left( \mathcal{K}_N^{1D} \right)$")
  40. plt.suptitle("exp 0")
  41. plt.show()
  42. exit()