Surface NMR forward modelling
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

KernelV0.cpp 4.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113
  1. /* This file is part of Lemma, a geophysical modelling and inversion API.
  2. * More information is available at http://lemmasoftware.org
  3. */
  4. /* This Source Code Form is subject to the terms of the Mozilla Public
  5. * License, v. 2.0. If a copy of the MPL was not distributed with this
  6. * file, You can obtain one at http://mozilla.org/MPL/2.0/.
  7. */
  8. /**
  9. * @file
  10. * @date 11/11/2016 02:44:37 PM
  11. * @version $Id$
  12. * @author Trevor Irons (ti)
  13. * @email tirons@egi.utah.edu
  14. * @copyright Copyright (c) 2016, University of Utah
  15. * @copyright Copyright (c) 2016, Lemma Software, LLC
  16. */
  17. #include <Merlin>
  18. using namespace Lemma;
  19. std::shared_ptr<PolygonalWireAntenna> CircularLoop ( int nd, Real radius, Real Offsetx, Real Offsety ) ;
  20. int main(int argc, char** argv) {
  21. Real offset = atof(argv[1]);
  22. std::cout << offset << std::endl;
  23. auto earth = LayeredEarthEM::NewSP();
  24. earth->SetNumberOfLayers(3);
  25. earth->SetLayerConductivity( (VectorXcr(3) << Complex(0.,0), Complex(1./50.,0), Complex(1./100.)).finished() );
  26. earth->SetLayerThickness( (VectorXr(1) << 10).finished() );
  27. // Set mag field info
  28. // From NOAA, Laramie WY, June 9 2016, aligned with mag. north
  29. earth->SetMagneticFieldIncDecMag( 67, 0, 52750, NANOTESLA );
  30. // Transmitter loops
  31. auto Tx1 = CircularLoop(21, 15, 100, 100);
  32. auto Tx2 = CircularLoop(21, 15, 100, 100 + offset); // 100, 115, 124.8, 130
  33. //auto Tx1 = CircularLoop(60, 15, 0, 0); // was 60
  34. auto Kern = KernelV0::NewSP();
  35. Kern->PushCoil( "Coil 1", Tx1 );
  36. Kern->PushCoil( "Coil 2", Tx2 );
  37. Kern->SetLayeredEarthEM( earth );
  38. Kern->SetIntegrationSize( (Vector3r() << 200,200,200).finished() );
  39. Kern->SetIntegrationOrigin( (Vector3r() << 0,0,0).finished() );
  40. Kern->SetTolerance( 1e-12 );
  41. Kern->SetPulseDuration(0.020);
  42. VectorXr I(36);
  43. // Pulses from Wyoming Red Buttes exp 0
  44. I << 397.4208916184016, 352.364477036168, 313.0112765842783, 278.37896394065376, 247.81424224324982,
  45. 220.77925043190442, 196.76493264105017, 175.31662279234038, 156.0044839325404, 138.73983004230124,
  46. 123.42064612625474, 109.82713394836259, 97.76534468972267, 87.06061858367781, 77.56000002944572, 69.1280780096311,
  47. 61.64250263640252, 54.99473044877554, 49.091182970515476, 43.84634004556388, 39.184136917167976, 35.03619319797924,
  48. 31.347205894128976, 28.06346770557137, 25.139117042424758, 22.53420773366429, 20.214205433283347,
  49. 18.144318026099942, 16.299965972298878, 14.652633628829891, 13.184271405688083, 11.870540177313893,
  50. 10.697057141915716, 9.64778948429609, 8.709338689612677, 7.871268012862094;
  51. //Kern->SetPulseCurrent( VectorXr::LinSpaced( 1, 10, 200 ) ); // nbins, low, high
  52. Kern->SetPulseCurrent( I ); // nbins, low, high
  53. //Kern->SetDepthLayerInterfaces( VectorXr::LinSpaced( 30, 3, 45.5 ) ); // nlay, low, high
  54. VectorXr interfaces = VectorXr::LinSpaced( 31, 1, 45.5 ); // nlay, low, high
  55. Real thick = .5;
  56. for (int ilay=1; ilay<interfaces.size(); ++ilay) {
  57. interfaces(ilay) = interfaces(ilay-1) + thick;
  58. thick *= 1.1;
  59. }
  60. Kern->SetDepthLayerInterfaces( interfaces ); // nlay, low, high
  61. // We could, I suppose, take the earth model in here? For non-linear that
  62. // may be more natural to work with?
  63. std::vector<std::string> tx = {std::string("Coil 1"), std::string("Coil 2") };
  64. //std::vector<std::string> tx = {std::string("Coil 1")};
  65. std::vector<std::string> rx = {std::string("Coil 1")};
  66. Kern->CalculateK0( tx, rx, false );
  67. std::ofstream dout = std::ofstream(std::string("k-")+ std::string(argv[1])+ std::string(".dat"));
  68. dout << interfaces.transpose() << std::endl;
  69. dout << I.transpose() << std::endl;
  70. dout << "#real\n";
  71. dout << Kern->GetKernel().real() << std::endl;
  72. dout << "#imag\n";
  73. dout << Kern->GetKernel().imag() << std::endl;
  74. dout.close();
  75. std::ofstream out = std::ofstream(std::string("k-")+std::string(argv[1])+std::string(".yaml"));
  76. out << *Kern;
  77. out.close();
  78. }
  79. std::shared_ptr<Lemma::PolygonalWireAntenna> CircularLoop ( int nd, Real Radius, Real Offsetx, Real Offsety ) {
  80. auto Tx1 = Lemma::PolygonalWireAntenna::NewSP();
  81. Tx1->SetNumberOfPoints(nd);
  82. VectorXr range = VectorXr::LinSpaced(nd, 0, 2*PI);
  83. int ii;
  84. for (ii=0; ii<nd; ++ii) {
  85. Tx1->SetPoint(ii, Vector3r(Offsetx+Radius*std::cos(range(ii)), Offsety+Radius*std::sin(range(ii)), -1e-3));
  86. }
  87. //Tx1->SetPoint(ii, Vector3r(Offsetx+Radius*1, Offsety, -1e-3));
  88. Tx1->SetCurrent(1.);
  89. Tx1->SetNumberOfTurns(1);
  90. Tx1->SetNumberOfFrequencies(1);
  91. Tx1->SetFrequency(0,2246);
  92. return Tx1;
  93. }