Main Lemma Repository

Eantenna.cpp 8.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. // ===========================================================================
  2. //
  3. // Filename: hantenna.cpp
  4. //
  5. // Created: 10/07/2010 08:57:04 AM
  6. // Modified: 11 April 2018
  7. // Compiler: Tested with g++, icpc, and MSVC 2017
  8. //
  9. // Author: Trevor Irons (ti)
  10. //
  11. // Copyright (C) 2012,2018 Trevor Irons
  12. //
  13. // Organisation: Lemma Software
  14. //
  15. // Email: Trevor.Irons@lemmasoftware.org
  16. //
  17. // ===========================================================================
  18. /**
  19. @file
  20. @author Trevor Irons
  21. @date 10/07/2010
  22. $Id$
  23. **/
  24. #include "LemmaCore"
  25. #include "FDEM1D"
  26. #include "timer.h"
  27. #if defined(__clang__)
  28. /* Clang/LLVM. ---------------------------------------------- */
  29. const char* compiler = "clang";
  30. const char* ver = __VERSION__;
  31. #elif defined(__ICC) || defined(__INTEL_COMPILER)
  32. /* Intel ICC/ICPC. ------------------------------------------ */
  33. const char* compiler = "icpc";
  34. const char* ver = __VERSION__;
  35. #elif defined(__GNUC__) || defined(__GNUG__)
  36. /* GNU GCC/G++. --------------------------------------------- */
  37. const char* compiler = "gcc (GCC) ";// __VERSION__;
  38. const char* ver = __VERSION__;
  39. #elif defined(_MSC_VER)
  40. /* Microsoft Visual Studio. --------------------------------- */
  41. const char* compiler = "msvc ";
  42. const int ver = _MSC_FULL_VER;
  43. #elif defined(__PGI)
  44. /* Portland Group PGCC/PGCPP. ------------------------------- */
  45. const char* compiler = "pgc";
  46. #endif
  47. using namespace Lemma;
  48. std::vector<Real> readinpfile(const std::string& fname);
  49. std::vector<std::string> readinpfile2(const std::string& fname);
  50. int main(int argc, char** argv) {
  51. const char *buildString = __DATE__ ", " __TIME__;
  52. std::cout
  53. << "===========================================================================\n"
  54. << "Lemma " << LEMMA_VERSION << "\n"
  55. << "[" << compiler << " " << ver << " " << buildString << "]\n"
  56. << "This program is part of Lemma, a geophysical modelling and inversion API. \n"
  57. << " This Source Code Form is subject to the terms of the Mozilla Public\n"
  58. << " License, v. 2.0. If a copy of the MPL was not distributed with this\n"
  59. << " file, You can obtain one at http://mozilla.org/MPL/2.0/. \n"
  60. << "Copyright (C) 2018 Lemma Software \n"
  61. << "More information may be found at: https://lemmasoftware.org\n"
  62. << " info@lemmasoftware.org\n"
  63. << "===========================================================================\n\n"
  64. << "Hantenna calculates the harmonic E field from polygonal wire loop sources\n";
  65. if (argc < 5) {
  66. std::cout << "usage: Eantenna.exe trans.inp cond.inp points.inp config.inp \n";
  67. exit(0);
  68. }
  69. #ifdef LEMMAUSEOMP
  70. std::cout << "OpenMP is using " << omp_get_max_threads() << " threads" << std::endl;
  71. #endif
  72. std::vector<Real> Trans = readinpfile(std::string(argv[1]));
  73. std::vector<Real> CondMod = readinpfile(std::string(argv[2]));
  74. std::vector<Real> Points = readinpfile(std::string(argv[3]));
  75. std::vector<std::string> config = readinpfile2(std::string(argv[4]));
  76. //////////////////////////////////////
  77. // Define transmitter
  78. auto trans = PolygonalWireAntenna::NewSP();
  79. trans->SetNumberOfPoints((int)(Trans[0]));
  80. int ip=1;
  81. for ( ; ip<=(int)(Trans[0])*2; ip+=2) {
  82. trans->SetPoint(ip/2, Vector3r (Trans[ip], Trans[ip+1], -1e-3));
  83. //trans->SetPoint(ip/2, Vector3r (Trans[ip], Trans[ip+1], 50.));
  84. }
  85. trans->SetNumberOfFrequencies(1);
  86. trans->SetFrequency(0, Trans[ip]);
  87. trans->SetCurrent(Trans[ip+1]);
  88. trans->SetMinDipoleRatio(atof(config[1].c_str()));
  89. trans->SetMinDipoleMoment(atof(config[2].c_str()));
  90. trans->SetMaxDipoleMoment(atof(config[3].c_str()));
  91. /////////////////////////////////////
  92. // Field calculations
  93. auto receivers = FieldPoints::NewSP();
  94. int nx = (int)Points[0];
  95. int ny = (int)Points[1];
  96. int nz = (int)Points[2];
  97. Real ox = Points[3];
  98. Real oy = Points[4];
  99. Real oz = Points[5];
  100. Vector3r loc;
  101. VectorXr dx(nx-1);
  102. VectorXr dy(ny-1);
  103. VectorXr dz(nz-1);
  104. ip = 6;
  105. int ir = 0;
  106. for ( ; ip <6+nx-1; ++ip) {
  107. dx[ir] = Points[ip];
  108. ++ir;
  109. }
  110. ir = 0;
  111. for ( ; ip <6+ny-1+nx-1; ++ip) {
  112. dy[ir] = Points[ip];
  113. ++ir;
  114. }
  115. ir = 0;
  116. for ( ; ip <6+nz-1+ny-1+nx-1; ++ip) {
  117. dz[ir] = Points[ip];
  118. ++ir;
  119. }
  120. receivers->SetNumberOfPoints(nx*ny*nz);
  121. ir = 0;
  122. Real pz = oz;
  123. for (int iz=0; iz<nz; ++iz) {
  124. Real py = oy;
  125. for (int iy=0; iy<ny; ++iy) {
  126. Real px = ox;
  127. for (int ix=0; ix<nx; ++ix) {
  128. loc << px, py, pz;
  129. receivers->SetLocation(ir, loc);
  130. if (ix < nx-1) px += dx[ix];
  131. ++ ir;
  132. }
  133. if (iy<ny-1) py += dy[iy];
  134. }
  135. if (iz<nz-1) pz += dz[iz];
  136. }
  137. ////////////////////////////////////
  138. // Define model
  139. auto earth = LayeredEarthEM::NewSP();
  140. VectorXcr sigma;
  141. VectorXr thick;
  142. earth->SetNumberOfLayers(static_cast<int>(CondMod[0])+1);
  143. sigma.resize(static_cast<int>(CondMod[0])+1); sigma(0) = 0; // airlayer
  144. thick.resize(static_cast<int>(CondMod[0])-1);
  145. int ilay=1;
  146. for ( ; ilay/2<CondMod[0]-1; ilay+=2) {
  147. sigma(ilay/2+1) = 1./CondMod[ilay];
  148. thick(ilay/2) = CondMod[ilay+1];
  149. }
  150. sigma(ilay/2+1) = 1./ CondMod[ilay];
  151. earth->SetLayerConductivity(sigma);
  152. if (thick.size() > 0) earth->SetLayerThickness(thick);
  153. auto EmEarth = EMEarth1D::NewSP();
  154. EmEarth->AttachWireAntenna(trans);
  155. EmEarth->AttachLayeredEarthEM(earth);
  156. EmEarth->AttachFieldPoints(receivers);
  157. EmEarth->SetFieldsToCalculate(E);
  158. EmEarth->SetHankelTransformMethod(string2Enum<HANKELTRANSFORMTYPE>(config[0]));
  159. ///////////////////////////////////////////////
  160. // Keep track of time
  161. jsw_timer timer;
  162. timer.begin();
  163. clock_t launch = clock();
  164. EmEarth->CalculateWireAntennaFields(true); // true=status bar
  165. Real paTime = timer.end();
  166. std::cout << "\n\n===========================================\ncalc. real time: " << paTime/60. << "\t[m]\n";
  167. std::cout << "calc. user time: " << (clock()-launch)/CLOCKS_PER_SEC/60. << "\t[CPU m]"
  168. << std::endl;
  169. ////////////////////////////////////
  170. // Report
  171. std::fstream hrep("efield.yaml", std::ios::out);
  172. std::fstream hreal("efield.dat", std::ios::out);
  173. hrep << *EmEarth << std::endl;
  174. hrep.close();
  175. //hreal << *trans << std::endl;
  176. //hreal << *earth << std::endl;
  177. hreal << "// Right hand coordinate system, z is positive down\n";
  178. hreal << "// x[m]\ty[m]\tz[m]\tRe(Ex[V])\tRe(Ey[V])\tRe(Ez[V])\tIm(Ex)[V]\tIm(Ey)[V]\tIm(Ez)[V]\n";
  179. hreal.precision(8);
  180. int i=0;
  181. for (int iz=0; iz<nz; ++iz) {
  182. for (int iy=0; iy<ny; ++iy) {
  183. for (int ix=0; ix<nx; ++ix) {
  184. hreal << receivers->GetLocation(i).transpose() << "\t";
  185. //hreal << receivers->GetHfield(0, i).transpose() << "\n"; // ( complex, notation )
  186. hreal << receivers->GetEfield(0, i).transpose().real() << "\t";
  187. hreal << receivers->GetEfield(0, i).transpose().imag() << "\n";
  188. ++i;
  189. }
  190. }
  191. }
  192. hreal.close();
  193. // Clean up
  194. // report timings
  195. #ifdef LEMMAUSEOMP
  196. std::ofstream outfile;
  197. outfile.open("timings.csv", std::ios_base::app);
  198. outfile << compiler << "," << ver << "," << buildString << "," << config[0] << "," << omp_get_max_threads() << "," << paTime/60. << "\n";
  199. #endif
  200. }
  201. std::vector<Real> readinpfile(const std::string& fname) {
  202. std::string buf;
  203. char dump[255];
  204. std::vector<Real> vals;
  205. std::fstream input(fname.c_str(), std::ios::in);
  206. if (input.fail()) {
  207. std::cerr << "Input file " << fname << " failed to open\n";
  208. exit(EXIT_FAILURE);
  209. }
  210. while (input >> buf) {
  211. if (buf.substr(0,2) == "//") {
  212. input.getline(dump, 255);
  213. } else {
  214. vals.push_back( atof(buf.c_str() ));
  215. }
  216. }
  217. return vals;
  218. }
  219. std::vector<std::string> readinpfile2(const std::string& fname) {
  220. std::string buf;
  221. char dump[255];
  222. std::vector<std::string> vals;
  223. std::fstream input(fname.c_str(), std::ios::in);
  224. if (input.fail()) {
  225. std::cerr << "Input file " << fname << " failed to open\n";
  226. exit(EXIT_FAILURE);
  227. }
  228. while (input >> buf) {
  229. if (buf.substr(0,2) == "//") {
  230. input.getline(dump, 255);
  231. } else {
  232. vals.push_back( std::string(buf.c_str() ));
  233. }
  234. }
  235. return vals;
  236. }