Main Lemma Repository

kernelem1dreflspec.h 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 05/18/2012
  9. @version $Id: kernelem1dreflspec.h 123 2014-02-05 23:47:20Z tirons $
  10. **/
  11. #ifndef KERNELEM1DREFLSPEC_INC
  12. #define KERNELEM1DREFLSPEC_INC
  13. #include "dipolesource.h"
  14. #include "kernelem1dreflbase.h"
  15. #include "layeredearthem.h"
  16. // #include<unordered_map> // for caching results
  17. namespace Lemma {
  18. // forward declare
  19. //struct cache;
  20. // Simple container to hold reflection results
  21. struct cache {
  22. Real rho0;
  23. Real lambda[805];
  24. Real rams[805];
  25. Complex uk[805];
  26. Complex um[805];
  27. Real zh0i[805];
  28. VectorXcr Rtd[805];
  29. VectorXcr Rtu[805];
  30. VectorXcr u[805];
  31. VectorXcr cf[805];
  32. VectorXcr kk[805];
  33. const Real epsilon;
  34. //bool nc;
  35. cache( ) : epsilon (std::numeric_limits<Real>::epsilon() ) { // TODO reset to precision of Real
  36. //Rtd = VectorXcr::Zero(805);
  37. //Rtu = VectorXcr::Zero(805);
  38. }
  39. };
  40. // forward declaration for friend
  41. template<EMMODE Mode, int Ikernel, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  42. class KernelEm1DSpec;
  43. // ===================================================================
  44. // Class: KernelEM1DReflSpec
  45. /**
  46. @class
  47. \brief Specialized version of KernelEM1DReflBase
  48. \details Through use of template specialisations, this KernelEm1D
  49. class delivers much better performance.
  50. */
  51. // ===================================================================
  52. template<EMMODE Mode, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  53. class KernelEM1DReflSpec : public KernelEM1DReflBase {
  54. public:
  55. template<EMMODE Mode2, int Ikernel2, DIPOLE_LOCATION Isource2, DIPOLE_LOCATION Irecv2>
  56. friend class KernelEm1DSpec;
  57. friend class KernelEM1DManager;
  58. // ==================== LIFECYCLE =======================
  59. static KernelEM1DReflSpec* New() {
  60. KernelEM1DReflSpec<Mode, Isource, Irecv>* Obj =
  61. new KernelEM1DReflSpec<Mode, Isource, Irecv>("KernelEM1DReflSpec<>");
  62. Obj->AttachTo(Obj);
  63. return Obj;
  64. }
  65. void Delete() {
  66. this->DetachFrom(this);
  67. }
  68. // ==================== OPERATORS =======================
  69. // ==================== OPERATIONS =======================
  70. // ==================== ACCESS =======================
  71. // ==================== INQUIRY =======================
  72. protected:
  73. // ==================== LIFECYCLE =======================
  74. /// Default protected constructor.
  75. KernelEM1DReflSpec (const std::string& name) : KernelEM1DReflBase(name)
  76. {
  77. }
  78. /// Default protected constructor.
  79. ~KernelEM1DReflSpec () {
  80. if (this->NumberOfReferences > 0)
  81. throw DeleteObjectWithReferences( this );
  82. }
  83. void Release() {
  84. delete this;
  85. }
  86. // ==================== OPERATIONS =======================
  87. /** Computes reflection coefficients. Depending on the
  88. * specialisation, this will either be TM or TE mode.
  89. */
  90. void ComputeReflectionCoeffs(const Real &lambda);
  91. /* Computes reflection coefficients. Depending on the
  92. * specialisation, this will either be TM or TE mode. This method
  93. * stores previous results in a struct. For a given index, and
  94. * lambda, the result will be the same. Turned out to be of limited utility.
  95. */
  96. //void ComputeReflectionCoeffs(const Real &lambda, const int& idx);
  97. /** Precomputes expensive calculations that are reused by insances
  98. * of KernelEM1DSpec in the calculation of Related potentials. This
  99. * method is specialised based on template parameters
  100. */
  101. void PreComputePotentialTerms();
  102. /*
  103. * Sets the cache in CACHE to use. Somewhat expensive, avoid calling in tight loops
  104. */
  105. //void SetTCache(const Real& rho0);
  106. // ==================== DATA MEMBERS =========================
  107. private:
  108. //** Storage container for reused results */
  109. //static std::unordered_map<Real, cache> CACHE;
  110. //** Currenly used cache */
  111. //cache* tcache;
  112. //#pragma omp threadprivate(tcache)
  113. }; // ----- end of class KernelEM1DReflSpec -----
  114. //template<EMMODE Mode, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  115. //std::unordered_map<Real, cache> KernelEM1DReflSpec<Mode, Isource, Irecv>::CACHE;
  116. //template<EMMODE Mode, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  117. //cache* KernelEM1DReflSpec<Mode, Isource, Irecv>::tcache;
  118. ///////////////////////////////////////////////
  119. // Declarations of specialisations
  120. template<>
  121. void KernelEM1DReflSpec<TM, INAIR, INAIR>::ComputeReflectionCoeffs(const Real& lambda);
  122. template<>
  123. void KernelEM1DReflSpec<TE, INAIR, INAIR>::ComputeReflectionCoeffs(const Real& lambda);
  124. template<>
  125. void KernelEM1DReflSpec<TM, INAIR, INGROUND>::ComputeReflectionCoeffs(const Real& lambda);
  126. template<>
  127. void KernelEM1DReflSpec<TE, INAIR, INGROUND>::ComputeReflectionCoeffs(const Real& lambda);
  128. template<>
  129. void KernelEM1DReflSpec<TM, INAIR, INAIR>::PreComputePotentialTerms( );
  130. template<>
  131. void KernelEM1DReflSpec<TE, INAIR, INAIR>::PreComputePotentialTerms( );
  132. template<>
  133. void KernelEM1DReflSpec<TM, INAIR, INGROUND>::PreComputePotentialTerms( );
  134. template<>
  135. void KernelEM1DReflSpec<TE, INAIR, INGROUND>::PreComputePotentialTerms( );
  136. ///////////////////////////////////////////////
  137. // Default mode definitions
  138. /*
  139. template<EMMODE Mode, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  140. void KernelEM1DReflSpec<Mode, Isource, Irecv>::SetTCache(const Real& rho0) {
  141. #ifdef LEMMAUSEOMP
  142. #pragma omp critical
  143. #endif
  144. {
  145. this->tcache = &this->CACHE[rho0];
  146. }
  147. }
  148. */
  149. /*
  150. template<EMMODE Mode, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  151. void KernelEM1DReflSpec<Mode, Isource, Irecv>::ComputeReflectionCoeffs(const Real& lambda, const int& idx) {
  152. if ( (std::abs(this->tcache->lambda[idx]-lambda) <= this->tcache->epsilon) &&
  153. this->tcache->u[idx].size() > 0 && std::abs(this->kk(0) - this->tcache->kk[idx](0)) <= this->tcache->epsilon ) {
  154. //std::cout << "USING CACHED RESULTS !!!!!!" << std::endl;
  155. // load all the values we need
  156. this->u = this->tcache->u[idx];
  157. this->rams = this->tcache->rams[idx];
  158. this->cf = this->tcache->cf[idx];
  159. //this->kk = this->tcache->kk[idx];
  160. this->uk = this->tcache->uk[idx];
  161. this->um = this->tcache->um[idx];
  162. this->rtd = this->tcache->Rtd[idx];
  163. this->rtu = this->tcache->Rtu[idx];
  164. } else { // else do the work
  165. }
  166. ComputeReflectionCoeffs(lambda);
  167. //#pragma omp critical
  168. //{
  169. //std::cout << idx << "\t" << lambda << "\t" << rtd.transpose() << std::endl;
  170. //}
  171. // store the results
  172. this->tcache->u[idx] = this->u;
  173. this->tcache->cf[idx] = this->cf;
  174. this->tcache->kk[idx] = this->kk;
  175. this->tcache->uk[idx] = this->uk;
  176. this->tcache->um[idx] = this->um;
  177. this->tcache->Rtd[idx] = this->rtd;
  178. this->tcache->Rtu[idx] = this->rtu;
  179. this->tcache->zh0i[idx] = std::imag(this->zh[0]);
  180. this->tcache->lambda[idx] = lambda;
  181. this->tcache->rams[idx] = rams;
  182. }
  183. return;
  184. }
  185. */
  186. template<EMMODE Mode, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  187. void KernelEM1DReflSpec<Mode, Isource, Irecv>::ComputeReflectionCoeffs(const Real& lambda) {
  188. static bool called = false;
  189. if (!called) {
  190. std::cout << "unspecialised Reflection function KernelEM1DReflSpec<"
  191. << Mode << ", " << Isource << ", "
  192. << Irecv << " >::ComputeReflectionCoeffs( const Real& lambda ) --> SLOW PERFORMANCE EXPECTED\n";
  193. called = true;
  194. }
  195. rams = lambda*lambda;
  196. //////////////////////////////////////////
  197. // Compute TEM stuff
  198. // This call to sqrt takes ~ 15% of execution time
  199. u = (rams-kk.array()).sqrt();
  200. uk = u(lays);
  201. um = u(layr);
  202. switch (Mode) {
  203. // TM mode
  204. case (TM):
  205. Zyu(1) = -u(0)/yh(0);
  206. Zyi = u.array() / yh.array();
  207. break;
  208. // TE mode
  209. case (TE):
  210. Zyu(1) = -u(0)/zh(0);
  211. Zyi = u.array() / zh.array();
  212. break;
  213. default:
  214. throw 11; //IllegalMode(this);
  215. }
  216. Zyd.tail<1>() = Zyi.tail<1>();
  217. for (int ilay=1; ilay<nlay-1; ++ilay) {
  218. cf(ilay) =
  219. std::exp(-(Real)(2.)*u(ilay)*LayerThickness(ilay));
  220. th(ilay) = ((Real)(1.)-cf(ilay)) / ((Real)(1.)+cf(ilay));
  221. }
  222. // Can't use blocks, b/c recursive
  223. for (int N=1; N<lays; ++N){
  224. Zyu(N+1)=Zyi(N)*(Zyu(N)-Zyi(N)*th(N)) /
  225. (Zyi(N)-Zyu(N)*th(N)) ;
  226. }
  227. int ne = nlay-2;
  228. for (int N=ne; N >=lays+1; --N) {
  229. Zyd(N) = Zyi(N)*(Zyd(N+1)+Zyi(N)*th(N)) /
  230. (Zyi(N)+Zyd(N+1)*th(N)) ;
  231. }
  232. rtd(nlay-1) = 0;
  233. if (layr < lays) {
  234. // Receiver above source layer
  235. int ls = layr;
  236. if (ls == 0) {
  237. ls = layr+1;
  238. }
  239. for (int N=ls; N<=lays; ++N) {
  240. rtu(N)= (Zyi(N)+Zyu(N)) /
  241. (Zyi(N)-Zyu(N)) ;
  242. }
  243. if (lays < nlay-1) {
  244. rtd(lays) = (Zyi(lays)-Zyd(lays+1)) /
  245. (Zyi(lays)+Zyd(lays+1)) ;
  246. }
  247. } else {
  248. // RECEIVER IN OR BELOW THE SOURCE LAYER
  249. if (lays == layr) { // Rx In source Layer
  250. if (layr == 0) {
  251. rtd(0) = (Zyu(1)+Zyd(1)) /
  252. (Zyu(1)-Zyd(1)) ;
  253. } else if (layr == nlay-1) {
  254. rtu(nlay-1) = (Zyi(nlay-1)+Zyu(nlay-1)) /
  255. (Zyi(nlay-1)-Zyu(nlay-1)) ;
  256. } else {
  257. rtu(layr) = (Zyi(layr)+Zyu(layr)) /
  258. (Zyi(layr)-Zyu(layr)) ;
  259. rtd(layr) = (Zyi(layr)-Zyd(layr+1)) /
  260. (Zyi(layr)+Zyd(layr+1)) ;
  261. }
  262. } else { // receiver below source layer
  263. if (lays == 0) {
  264. rtd(0) = (Zyu(1)+Zyd(1)) /
  265. (Zyu(1)-Zyd(1)) ;
  266. } else {
  267. rtu(lays) = (Zyi(lays)+Zyu(lays)) /
  268. (Zyi(lays)-Zyu(lays)) ;
  269. }
  270. int le = layr;
  271. if (le == nlay-1) --le;
  272. int ls = lays;
  273. if (lays == 0 ) ++ls;
  274. // TODO use blocks to vectorize maybe?
  275. // This works but gives same to slightly worse
  276. // performance as loop.
  277. // int nn = le-ls+1;
  278. // rtd.segment(ls, nn) =
  279. // (Zyi.segment(ls , nn).array() -
  280. // Zyd.segment(ls+1, nn).array()).array() /
  281. // (Zyi.segment(ls , nn).array() +
  282. // Zyd.segment(ls+1, nn).array()).array() ;
  283. for (int N=ls; N<=le; ++N) {
  284. rtd(N) = (Zyi(N)-Zyd(N+1)) /
  285. (Zyi(N)+Zyd(N+1)) ;
  286. }
  287. }
  288. } // End in or below source layer
  289. return;
  290. }
  291. template<EMMODE Mode, DIPOLE_LOCATION Isource, DIPOLE_LOCATION Irecv>
  292. void KernelEM1DReflSpec<Mode, Isource, Irecv>::PreComputePotentialTerms( ) {
  293. static bool called = false;
  294. if (!called) {
  295. std::cerr << "unspecialised function KernelEM1DReflSpec<"
  296. << Mode << ", " << Isource << ", "
  297. << Irecv << " >::PreComputePotentialTerms\n";
  298. called = true;
  299. }
  300. }
  301. } // ----- end of Lemma name -----
  302. #endif // ----- #ifndef KERNELEM1DREFLSPEC_INC -----