/* This file is part of Lemma, a geophysical modelling and inversion API. * More information is available at http://lemmasoftware.org */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * @file * @date 09/25/2013 08:20:14 AM * @version $Id$ * @author Trevor Irons (ti) * @email Trevor.Irons@xri-geo.com * @copyright Copyright (c) 2013, XRI Geophysics, LLC * @copyright Copyright (c) 2013, Trevor Irons */ #ifndef CUBICSPLINEINTERPOLATOR_INC #define CUBICSPLINEINTERPOLATOR_INC #include "LemmaObject.h" namespace Lemma { // Simple struct to hold spline terms struct SplineSet{ VectorXr a; VectorXr b; VectorXr c; VectorXr d; VectorXr x; SplineSet( ) { } SplineSet(const int&n) { a = VectorXr::Zero(n+1); b = VectorXr::Zero(n); c = VectorXr::Zero(n+1); d = VectorXr::Zero(n); x = VectorXr::Zero(n+1); } }; /** * \ingroup LemmaCore * \brief Real 1D Natural cubic spline interpolator. * \details Splines are fit between knots \f$j\f$ according to the forulae * \f[ S_j(x) = a_j + b_j(x - x_j) + c_j(x-x_j)^2 + d_j(x-x_y)^3 \f] * The spline must satisfy the following conditions * \f{eqnarray} { * S_i(x_i) & = & y_i = S_{i-1}(x_i), i = 1,..., n-1 \\ * S'_i(x_i) & = & S'_{i-1}(x_i), i = 1,..., n-1 \\ * S''_i(x_i) & = & S''_{i-1}(x_i), i = 1,..., n-1 \\ * S''_0(x_0) & = & S''_{n-1}(x_n) = 0 * \f} */ class CubicSplineInterpolator : public LemmaObject { friend std::ostream &operator<<(std::ostream &stream, const CubicSplineInterpolator &ob); struct ctor_cookie {}; public: // ==================== LIFECYCLE ======================= /** Default constructor */ explicit CubicSplineInterpolator ( const ctor_cookie& ); /** DeSerializing constructor, usees factory DeSerialize method*/ CubicSplineInterpolator ( const YAML::Node& node, const ctor_cookie& ); /** Destructor use smart pointers to auto delete */ virtual ~CubicSplineInterpolator (); /** * Factory method for generating concrete class. * @return a std::shared_ptr of type CubicSplineInterpolator */ static std::shared_ptr NewSP(); /** * Uses YAML to serialize this object. * @return a YAML::Node */ YAML::Node Serialize() const; /** * Constructs an object from a YAML::Node. */ static std::shared_ptr< CubicSplineInterpolator > DeSerialize(const YAML::Node& node); // ==================== OPERATORS ======================= // ==================== OPERATIONS ======================= /** Sets the knots to use for interpolation. @param[in] x are the absissa values @param[in] y are the ordinate values */ void SetKnots(const VectorXr& x, const VectorXr& y); /** Resets the knots to use for interpolation, when abscissa values haven't changed. @param[in] y are the ordinate values */ void ResetKnotOrdinate( const VectorXr& y ); /** Interpolate a monotonically increasing ordered set. @param[in] x are the interpolation abscissa points @return the ordinate values at x */ VectorXr InterpolateOrderedSet(const VectorXr& x); /** integrates the spline from x0 to x1. Uses composite Simpson's rule and n is the number of segments * @param[in] x0 is left argument * @param[in] x1 is right argument * @param[in] n is the number of points, must be even */ Real Integrate(const Real& x0, const Real& x1, const int& n); /** integrates using cubic spline values. Taken from AMRIRA P223F project code Leroi, which in turn was based on This is a modification of the FUNCTION PPVALU in the book "A PRACTICAL GUIDE TO SPLINES" by C. DE BOOR */ Real Integrate(const Real& x0, const Real& x1); /** @returns the know abscissa values */ VectorXr GetKnotAbscissa(); /** @returns the know abscissa values */ VectorXr GetKnotOrdinate(); /** Interpolation at a single point. @param[in] x is the interpolation abscissa point @param[in] i is an optional index to start searching at. Defaults to zero @return the ordinate value at x */ Real Interpolate(const Real& x, int& i); /** Interpolation at a single point. @param[in] x is the interpolation abscissa point @return the ordinate value at x */ Real Interpolate(const Real& x); // ==================== ACCESS ======================= // ==================== INQUIRY ======================= /** Returns the name of the underlying class, similiar to Python's type */ virtual inline std::string GetName() const { return CName; } protected: // ==================== OPERATIONS ======================= /** Finds the interval of knots in spline to use for integration. */ int Interval(const Real& x); private: /** ASCII string representation of the class name */ static constexpr auto CName = "CubicSplineInterpolator"; SplineSet Spline; int ilo; int mflag; // ==================== DATA MEMBERS ========================= }; // ----- end of class CubicSplineInterpolator ----- } // ----- end of Lemma name ----- #endif // ----- #ifndef CUBICSPLINEINTERPOLATOR_INC ----- /* vim: set tabstop=4 expandtab: */ /* vim: set filetype=cpp: */