Galerkin FEM for elliptic PDEs
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

FEM4EllipticPDE.cpp 48KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. // ===========================================================================
  2. //
  3. // Filename: FEM4EllipticPDE.cpp
  4. //
  5. // Created: 08/16/12 18:19:57
  6. // Compiler: Tested with g++, icpc, and MSVC 2010
  7. //
  8. // Author: Trevor Irons (ti)
  9. //
  10. // Organisation: Colorado School of Mines (CSM)
  11. // United States Geological Survey (USGS)
  12. // University of Utah (UU), 2016
  13. //
  14. // Email: tirons@egi.utah.edu
  15. //
  16. // ===========================================================================
  17. /**
  18. @file
  19. @author Trevor Irons
  20. @date 08/16/12
  21. **/
  22. #include "FEM4EllipticPDE.h"
  23. namespace Lemma {
  24. std::ostream &operator << (std::ostream &stream, const FEM4EllipticPDE &ob) {
  25. stream << ob.Serialize() << "\n";
  26. return stream;
  27. }
  28. // ==================== LIFECYCLE =======================
  29. FEM4EllipticPDE::FEM4EllipticPDE( const ctor_key& key ) :
  30. LemmaObject(key), BndryH(10), BndrySigma(10),
  31. vtkSigma(nullptr), vtkG(nullptr), vtkGrid(nullptr), gFcn3(nullptr) {
  32. }
  33. //--------------------------------------------------------------------------------------
  34. // Class: FEM4EllipticPDE
  35. // Method: FEM4EllipticPDE
  36. // Description: DeSerializing constructor (protected)
  37. //--------------------------------------------------------------------------------------
  38. FEM4EllipticPDE::FEM4EllipticPDE (const YAML::Node& node, const ctor_key& key) : LemmaObject(node, key) {
  39. // TODO impliment
  40. throw std::runtime_error("FEM4ELLIPTICPDE YAML CONSTRUCTOR NOT IMPLIMENTED!");
  41. } // ----- end of method FEM4EllipticPDE::FEM4EllipticPDE (constructor) -----
  42. FEM4EllipticPDE::~FEM4EllipticPDE() {
  43. }
  44. std::shared_ptr<FEM4EllipticPDE> FEM4EllipticPDE::NewSP( ) {
  45. return std::make_shared<FEM4EllipticPDE>( ctor_key() );
  46. }
  47. //--------------------------------------------------------------------------------------
  48. // Class: FEM4EllipticPDE
  49. // Method: Serialize
  50. //--------------------------------------------------------------------------------------
  51. YAML::Node FEM4EllipticPDE::Serialize ( ) const {
  52. YAML::Node node = LemmaObject::Serialize();
  53. node.SetTag( this->GetName() );
  54. // node["thing"] = value;
  55. return node;
  56. } // ----- end of method FEM4EllipticPDE::Serialize -----
  57. //--------------------------------------------------------------------------------------
  58. // Class: FEM4EllipticPDE
  59. // Method: DeSerialize
  60. //--------------------------------------------------------------------------------------
  61. std::shared_ptr<FEM4EllipticPDE> FEM4EllipticPDE::DeSerialize ( const YAML::Node& node ) {
  62. if (node.Tag() != "FEM4EllipticPDE") {
  63. throw DeSerializeTypeMismatch( "FEM4EllipticPDE", node.Tag() );
  64. }
  65. return std::make_shared<FEM4EllipticPDE> (node, ctor_key());
  66. } // ----- end of method FEM4EllipticPDE::DeSerialize -----
  67. // ==================== OPERATIONS =======================
  68. void FEM4EllipticPDE::SetSigmaFunction(vtkImplicitFunction* sigma) {
  69. vtkSigma = sigma;
  70. }
  71. void FEM4EllipticPDE::SetBoundaryStep(const Real& h) {
  72. BndryH = h;
  73. }
  74. void FEM4EllipticPDE::SetGFunction(vtkImplicitFunction* g) {
  75. vtkG = g;
  76. }
  77. void FEM4EllipticPDE::SetGFunction( Real (*gFcn)(const Real&, const Real&, const Real&) ) {
  78. // vtkG = g;
  79. gFcn3 = gFcn;
  80. }
  81. void FEM4EllipticPDE::SetGrid(vtkUnstructuredGrid* grid) {
  82. vtkGrid = grid;
  83. }
  84. //--------------------------------------------------------------------------------------
  85. // Class: FEM4EllipticPDE
  86. // Method: SetVTUGridFile
  87. //--------------------------------------------------------------------------------------
  88. void FEM4EllipticPDE::SetVTUGridFile ( const std::string& fname ) {
  89. SetVTUGridFile( fname.c_str() );
  90. return ;
  91. } // ----- end of method FEM4EllipticPDE::SetVTKGridFile -----
  92. //--------------------------------------------------------------------------------------
  93. // Class: FEM4EllipticPDE
  94. // Method: SetVTUGridFile
  95. //--------------------------------------------------------------------------------------
  96. void FEM4EllipticPDE::SetVTUGridFile ( const char* fname ) {
  97. std::cout << "Loading VTK .vtu file " << fname;
  98. vtkXMLUnstructuredGridReader* MeshReader = vtkXMLUnstructuredGridReader::New();
  99. MeshReader->SetFileName(fname);
  100. MeshReader->Update();
  101. //vtkGrid->DeepCopy( MeshReader->GetOutput() );
  102. //vtkGrid->ShallowCopy( MeshReader->GetOutput() );
  103. vtkGrid = MeshReader->GetOutput();
  104. if (!vtkGrid->GetNumberOfCells()) {
  105. throw std::runtime_error("In FEM4EllipticPDE::SetVTUGridFile NUMBER OF CELLS = 0");
  106. }
  107. if (!vtkGrid->GetNumberOfPoints()) {
  108. throw std::runtime_error("In FEM4EllipticPDE::SetVTUGridFile NUMBER OF POINTS = 0");
  109. }
  110. MeshReader->Delete();
  111. std::cout << " Finished! " << std::endl;
  112. return ;
  113. } // ----- end of method FEM4EllipticPDE::SetVTKGridFile -----
  114. //--------------------------------------------------------------------------------------
  115. // Class: FEM4EllipticPDE
  116. // Method: GetConnectedPoints
  117. // (C) Joe Capriotti 2013
  118. //--------------------------------------------------------------------------------------
  119. vtkSmartPointer<vtkIdList> FEM4EllipticPDE::GetConnectedPoints(const int& id0) {
  120. vtkSmartPointer<vtkIdList> pointIds = vtkSmartPointer<vtkIdList>::New();
  121. vtkSmartPointer<vtkIdList> cellList = vtkSmartPointer<vtkIdList>::New();
  122. vtkGrid->GetPointCells(id0, cellList);
  123. for(int i=0;i<cellList->GetNumberOfIds(); ++i){
  124. vtkCell* cell = vtkGrid->GetCell(cellList->GetId(i));
  125. if(cell->GetNumberOfEdges() > 0){
  126. for(int j=0; j<cell->GetNumberOfEdges(); ++j){
  127. vtkCell* edge = cell->GetEdge(j);
  128. vtkIdList* edgePoints=edge->GetPointIds();
  129. if(edgePoints->GetId(0)==id0){
  130. pointIds->InsertUniqueId(edgePoints->GetId(1));
  131. } else if(edgePoints->GetId(1)==id0){
  132. pointIds->InsertUniqueId(edgePoints->GetId(0));
  133. }
  134. }
  135. }
  136. }
  137. return pointIds;
  138. } // ----- end of method FEM4EllipticPDE::GetConnectedPoints -----
  139. Real FEM4EllipticPDE::dist(Real r0[3], Real r1[3]) {
  140. Real rm0 = r1[0] - r0[0];
  141. Real rm1 = r1[1] - r0[1];
  142. Real rm2 = r1[2] - r0[2];
  143. return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
  144. }
  145. Real FEM4EllipticPDE::dist(const Vector3r& r0, const Vector3r& r1) {
  146. Real rm0 = r1[0] - r0[0];
  147. Real rm1 = r1[1] - r0[1];
  148. Real rm2 = r1[2] - r0[2];
  149. return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
  150. }
  151. //--------------------------------------------------------------------------------------
  152. // Class: FEM4EllipticPDE
  153. // Method: SetupDC
  154. //--------------------------------------------------------------------------------------
  155. void FEM4EllipticPDE::SetupDC ( DCSurvey* Survey, const int& ij ) {
  156. ////////////////////////////////////////////////////////////
  157. // Load vector g, solution vector u
  158. std::cout << "\nBuilding load vector (g)" << std::endl;
  159. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  160. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
  161. int iia(0);
  162. Real jja(0);
  163. Survey->GetA( ij, iia, jja );
  164. //g(ii) = jj;
  165. int iib(0);
  166. Real jjb(0);
  167. Survey->GetB( ij, iib, jjb );
  168. //g(ii) = jj;
  169. /* 3D Phi */
  170. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  171. // Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  172. // for (int ii=0; ii<4; ++ii) {
  173. // double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  174. // C(ii, 0) = 1;
  175. // C(ii, 1) = pts[0];
  176. // C(ii, 2) = pts[1];
  177. // C(ii, 3) = pts[2];
  178. // }
  179. // Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  180. //
  181. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  182. int ID[4];
  183. ID[0] = Ids->GetId(0);
  184. ID[1] = Ids->GetId(1);
  185. ID[2] = Ids->GetId(2);
  186. ID[3] = Ids->GetId(3);
  187. //Real V = C.determinant(); // volume of tetrahedra
  188. Real sum(0);
  189. if (ID[0] == iia || ID[1] == iia || ID[2] == iia || ID[3] == iia ) {
  190. std::cout << "Caught A electrode, injecting " << iia << std::endl;
  191. //sum = 10;
  192. //g(ID[iia]) += jja;
  193. g(iia) += jja;
  194. }
  195. if (ID[0] == iib || ID[1] == iib || ID[2] == iib || ID[3] == iib) {
  196. //sum = -10;
  197. std::cout << "Caught B electrode, injecting " << iib << std::endl;
  198. //g(ID[iib]) += jjb;
  199. g(iib) += jjb;
  200. }
  201. //g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
  202. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  203. }
  204. return ;
  205. } // ----- end of method FEM4EllipticPDE::SetupDC -----
  206. void FEM4EllipticPDE::Solve( const std::string& resfile ) {
  207. ConstructAMatrix();
  208. //SetupLineSourcePotential();
  209. if (vtkGrid->GetPointData()->GetScalars("G") ) {
  210. SetupSurfaceSourcePotential();
  211. } else if (vtkGrid->GetCellData()->GetScalars("G") ) {
  212. SetupPotential();
  213. }
  214. //ConstructLoadVector();
  215. std::cout << "\nSolving" << std::endl;
  216. std::cout << std::setw(5) << " " << std::setw(14) << "rows" << std::setw(14) << "cols" << std::endl;
  217. std::cout << std::setw(5) << " " << std::setw(14) << "--------" << std::setw(14) << "--------" << std::endl;
  218. std::cout << std::setw(5) << "A:" << std::setw(14) << A.rows() << std::setw(14) << A.cols() << std::endl;
  219. std::cout << std::setw(5) << "g:" << std::setw(14) << g.rows() << std::setw(14) << g.cols() << std::endl;
  220. ////////////////////////////////////////////////////////////
  221. // Solving:
  222. //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
  223. //VectorXr u = chol.solve(g);
  224. //#define LUSOLVE
  225. #ifdef LUSOLVE
  226. Eigen::SparseLU<Eigen::SparseMatrix<Real, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > solver;
  227. std::cout << "LU analyze pattern" << std::endl;
  228. solver.analyzePattern(A);
  229. std::cout << "LU factorizing" << std::endl;
  230. solver.factorize(A);
  231. std::cout << "LU solving" << std::endl;
  232. solver.factorize(A);
  233. VectorXr u = solver.solve(g);
  234. #endif
  235. #define CGSOLVE
  236. #ifdef CGSOLVE
  237. // TODO try IncompleteLUT preconditioner
  238. Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
  239. //cg.setMaxIterations(3000);
  240. //cg.setTolerance(1e-28);
  241. VectorXr u = cg.solve(g);
  242. std::cout << "#iterations: " << cg.iterations() << std::endl;
  243. std::cout << "estimated error: " << cg.error() << std::endl;
  244. #endif
  245. vtkDoubleArray *gArray = vtkDoubleArray::New();
  246. vtkDoubleArray *uArray = vtkDoubleArray::New();
  247. uArray->SetNumberOfComponents(1);
  248. gArray->SetNumberOfComponents(1);
  249. for (int iu = 0; iu<u.size(); ++iu) {
  250. uArray->InsertTuple1(iu, u[iu]);
  251. gArray->InsertTuple1(iu, g[iu]);
  252. }
  253. uArray->SetName("u");
  254. gArray->SetName("g");
  255. vtkGrid->GetPointData()->AddArray(uArray);
  256. vtkGrid->GetPointData()->AddArray(gArray);
  257. vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
  258. Writer->SetInputData(vtkGrid);
  259. Writer->SetFileName(resfile.c_str());
  260. Writer->Write();
  261. Writer->Delete();
  262. gArray->Delete();
  263. uArray->Delete();
  264. }
  265. //--------------------------------------------------------------------------------------
  266. // Class: FEM4EllipticPDE
  267. // Method: ConstructAMatrix
  268. //--------------------------------------------------------------------------------------
  269. void FEM4EllipticPDE::ConstructAMatrix ( ) {
  270. /////////////////////////////////////////////////////////////////////////
  271. // Build stiffness matrix (A)
  272. std::cout << "Building Stiffness Matrix (A) " << std::endl;
  273. std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
  274. std::cout << "\tMesh has " << vtkGrid->GetNumberOfPoints() << " points " << std::endl;
  275. //Eigen::SparseMatrix<Real>
  276. A.resize(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
  277. std::vector< Eigen::Triplet<Real> > coeffs;
  278. if ( !vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet") ) {
  279. throw std::runtime_error("No HomogeneousDirichlet boundary conditions in input file.");
  280. }
  281. if ( !vtkGrid->GetCellData()->GetScalars("G") && !vtkGrid->GetPointData()->GetScalars("G") ) {
  282. throw std::runtime_error("No Cell or Point Data G");
  283. }
  284. bool GCell = false;
  285. if ( vtkGrid->GetCellData()->GetScalars("G") ) {
  286. GCell = true;
  287. }
  288. // Here we iterate over all of the cells
  289. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  290. assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
  291. // TODO, in production code we might not want to do this check here
  292. if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
  293. throw std::runtime_error("Non-tetrahedral mesh encountered!");
  294. }
  295. // construct coordinate matrix C
  296. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  297. for (int ii=0; ii<4; ++ii) {
  298. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  299. C(ii, 0) = 1;
  300. C(ii, 1) = pts[0] ;
  301. C(ii, 2) = pts[1] ;
  302. C(ii, 3) = pts[2] ;
  303. }
  304. Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  305. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  306. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  307. int ID[4];
  308. ID[0] = Ids->GetId(0);
  309. ID[1] = Ids->GetId(1);
  310. ID[2] = Ids->GetId(2);
  311. ID[3] = Ids->GetId(3);
  312. Real sigma_bar(0);
  313. // TEST VOID IN SIGMA!! TODO DON"T KEEP THIS
  314. /*
  315. Real xc = C.col(1).array().mean();
  316. Real yc = C.col(2).array().mean();
  317. Real zc = C.col(3).array().mean();
  318. if ( xc >= 2.5 && xc <= 5. && yc>=2.5 && yc <= 5.) {
  319. sigma_bar = 0.;
  320. } else {
  321. sigma_bar = 1.;
  322. }
  323. */
  324. sigma_bar = 1.;
  325. for (int ii=0; ii<4; ++ii) {
  326. int bbi = vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0];
  327. if (bbi) {
  328. /* Dirichlet boundary */
  329. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[ii], 1));
  330. } else {
  331. for (int jj=0; jj<4; ++jj) {
  332. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  333. }
  334. }
  335. }
  336. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  337. }
  338. A.setFromTriplets(coeffs.begin(), coeffs.end());
  339. A.finalize();
  340. A.makeCompressed();
  341. }
  342. void FEM4EllipticPDE::SetupPotential() {
  343. ////////////////////////////////////////////////////////////
  344. // Load vector g
  345. std::cout << "\nBuilding load vector (g)" << std::endl;
  346. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  347. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " points" << std::endl;
  348. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  349. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  350. for (int ii=0; ii<4; ++ii) {
  351. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  352. C(ii, 0) = 1;
  353. C(ii, 1) = pts[0];
  354. C(ii, 2) = pts[1];
  355. C(ii, 3) = pts[2];
  356. }
  357. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  358. //Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  359. /* The indices */
  360. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  361. int ID[4];
  362. ID[0] = Ids->GetId(0);
  363. ID[1] = Ids->GetId(1);
  364. ID[2] = Ids->GetId(2);
  365. ID[3] = Ids->GetId(3);
  366. /* Fill the RHS vector with Dirichlet conditions or fuction value */
  367. for (int ii=0; ii<4; ++ii) {
  368. if (vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0]) {
  369. g(ID[ii]) += vtkGrid->GetPointData()->GetScalars("analytic_phi")->GetTuple(ID[ii])[0];
  370. } else {
  371. g(ID[ii]) += (V/4.)*(vtkGrid->GetCellData()->GetScalars("G")->GetTuple(ic)[0]); // Cell data
  372. /* for point data, determine if it is a point or line source */
  373. //g(ID[ii]) = (vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[ii])[0]); // Point source
  374. //g(ID[ii]) = (vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[ii])[0]); // Point source
  375. }
  376. }
  377. }
  378. }
  379. void FEM4EllipticPDE::SetupLineSourcePotential() {
  380. std::cerr << " FEM4EllipticPDE::SetupLineSourcePotential is not completed\n";
  381. exit(1);
  382. ////////////////////////////////////////////////////////////
  383. // Load vector g
  384. std::cout << "\nBuilding load vector (g)" << std::endl;
  385. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  386. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " points" << std::endl;
  387. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  388. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  389. for (int ii=0; ii<4; ++ii) {
  390. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  391. C(ii, 0) = 1;
  392. C(ii, 1) = pts[0];
  393. C(ii, 2) = pts[1];
  394. C(ii, 3) = pts[2];
  395. }
  396. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  397. //Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  398. /* The indices */
  399. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  400. int ID[4];
  401. ID[0] = Ids->GetId(0);
  402. ID[1] = Ids->GetId(1);
  403. ID[2] = Ids->GetId(2);
  404. ID[3] = Ids->GetId(3);
  405. /* Line source between nodes */
  406. for (int ii=0; ii<4; ++ii) {
  407. if (vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0]) {
  408. g(ID[ii]) += vtkGrid->GetPointData()->GetScalars("analytic_phi")->GetTuple(ID[ii])[0];
  409. } else {
  410. Real nv1 = vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[ii])[0];
  411. for (int jj=ii+1; jj<4; ++jj) {
  412. Real nv2 = vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[jj])[0];
  413. if ( std::abs(nv1) > 1e-12 && std::abs(nv2) > 1e-12) {
  414. Real length = ( C.row(ii).tail<3>()-C.row(jj).tail<3>() ).norm();
  415. g(ID[ii]) += ((nv1+nv2)/2.)/(length);
  416. }
  417. }
  418. }
  419. }
  420. }
  421. }
  422. void FEM4EllipticPDE::SetupSurfaceSourcePotential() {
  423. ////////////////////////////////////////////////////////////
  424. // Load vector g
  425. std::cout << "\nBuilding load vector (g)" << std::endl;
  426. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  427. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  428. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  429. for (int ii=0; ii<4; ++ii) {
  430. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  431. C(ii, 0) = 1;
  432. C(ii, 1) = pts[0];
  433. C(ii, 2) = pts[1];
  434. C(ii, 3) = pts[2];
  435. }
  436. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  437. //Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  438. /* The indices */
  439. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  440. int ID[4];
  441. ID[0] = Ids->GetId(0);
  442. ID[1] = Ids->GetId(1);
  443. ID[2] = Ids->GetId(2);
  444. ID[3] = Ids->GetId(3);
  445. // Apply Dirichlet conditions
  446. for (int ii=0; ii<4; ++ii) {
  447. //if (vtkGrid->GetPointData()->GetScalars("InHomogeneousDirichlet")->GetTuple(ID[ii])[0]) {
  448. // g(ID[ii]) += vtkGrid->GetPointData()->GetScalars("analytic_phi")->GetTuple(ID[ii])[0];
  449. //}
  450. }
  451. /* the 4 faces of the tetrahedra
  452. ID[0] ID[1] ID[2]
  453. ID[0] ID[1] ID[3]
  454. ID[0] ID[2] ID[3]
  455. ID[1] ID[2] ID[3]
  456. */
  457. Real i4pi = .5;
  458. /* surfaces of tetrahedra */
  459. // Face 0, ID 0,1,2
  460. Eigen::Matrix<Real, 3, 3> CC = Eigen::Matrix<Real, 3, 3>::Ones() ;
  461. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])) > 1e-12 &&
  462. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])) > 1e-12 &&
  463. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])) > 1e-12 ) {
  464. CC.col(1) = C.row(0).tail<3>() - C.row(1).tail<3>();
  465. CC.col(2) = C.row(0).tail<3>() - C.row(2).tail<3>();
  466. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  467. g(ID[0]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])*TA/3. * i4pi ;
  468. g(ID[1]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])*TA/3. * i4pi ;
  469. g(ID[2]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])*TA/3. * i4pi ;
  470. }
  471. // Face 1, ID 0,1,3
  472. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])) > 1e-12 &&
  473. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])) > 1e-12 &&
  474. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])) > 1e-12 ) {
  475. CC.col(1) = C.row(0).tail<3>() - C.row(1).tail<3>();
  476. CC.col(2) = C.row(0).tail<3>() - C.row(3).tail<3>();
  477. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  478. g(ID[0]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])*TA/3. * i4pi ;
  479. g(ID[1]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])*TA/3. * i4pi ;
  480. g(ID[3]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])*TA/3. * i4pi ;
  481. }
  482. // Face 2, ID 0,2,3
  483. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])) > 1e-12 &&
  484. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])) > 1e-12 &&
  485. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])) > 1e-12 ) {
  486. CC.col(1) = C.row(0).tail<3>() - C.row(2).tail<3>();
  487. CC.col(2) = C.row(0).tail<3>() - C.row(3).tail<3>();
  488. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  489. g(ID[0]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])*TA/3. * i4pi ;
  490. g(ID[2]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])*TA/3. * i4pi ;
  491. g(ID[3]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])*TA/3. * i4pi ;
  492. }
  493. // Face 3, ID 1,2,3
  494. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])) > 1e-12 &&
  495. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])) > 1e-12 &&
  496. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])) > 1e-12 ) {
  497. CC.col(1) = C.row(1).tail<3>() - C.row(2).tail<3>();
  498. CC.col(2) = C.row(1).tail<3>() - C.row(3).tail<3>();
  499. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  500. g(ID[1]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])*TA/3. * i4pi ;
  501. g(ID[2]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])*TA/3. * i4pi ;
  502. g(ID[3]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])*TA/3. * i4pi ;
  503. }
  504. }
  505. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " points" << std::endl;
  506. }
  507. #if 0
  508. void FEM4EllipticPDE::SolveOLD2(const std::string& fname) {
  509. Real r0[3];
  510. Real r1[3];
  511. /////////////////////////////////////////////////////////////////////////
  512. // Surface filter, to determine if points are on boundary, and need
  513. // boundary conditions applied
  514. vtkDataSetSurfaceFilter* Surface = vtkDataSetSurfaceFilter::New();
  515. Surface->SetInputData(vtkGrid);
  516. Surface->PassThroughPointIdsOn( );
  517. Surface->Update();
  518. vtkIdTypeArray* BdryIds = static_cast<vtkIdTypeArray*>
  519. (Surface->GetOutput()->GetPointData()->GetScalars("vtkOriginalPointIds"));
  520. // Expensive search for whether or not point is on boundary. O(n) cost.
  521. VectorXi bndryCnt = VectorXi::Zero(vtkGrid->GetNumberOfPoints());
  522. for (int isp=0; isp < Surface->GetOutput()->GetNumberOfPoints(); ++isp) {
  523. //double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  524. // x \in -14.5 to 14.5
  525. // y \in 0 to 30
  526. bndryCnt(BdryIds->GetTuple1(isp)) += 1;
  527. }
  528. /////////////////////////////////////////////////////////////////////////
  529. // Build stiffness matrix (A)
  530. std::cout << "Building Stiffness Matrix (A) " << std::endl;
  531. std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
  532. std::cout << "\tMesh has " << vtkGrid->GetNumberOfPoints() << " points " << std::endl;
  533. Eigen::SparseMatrix<Real> A(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
  534. std::vector< Eigen::Triplet<Real> > coeffs;
  535. // Here we iterate over all of the cells
  536. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  537. assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
  538. // TODO, in production code we might not want to do this check here
  539. if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
  540. std::cout << "DOOM FEM4EllipticPDE encountered non-tetrahedral mesh\n";
  541. std::cout << "Number of points in cell " << vtkGrid->GetCell(ic)->GetNumberOfPoints() << std::endl ;
  542. exit(1);
  543. }
  544. // construct coordinate matrix C
  545. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  546. for (int ii=0; ii<4; ++ii) {
  547. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  548. C(ii, 0) = 1;
  549. C(ii, 1) = pts[0] ;
  550. C(ii, 2) = pts[1] ;
  551. C(ii, 3) = pts[2] ;
  552. }
  553. Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  554. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  555. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  556. int ID[4];
  557. ID[0] = Ids->GetId(0);
  558. ID[1] = Ids->GetId(1);
  559. ID[2] = Ids->GetId(2);
  560. ID[3] = Ids->GetId(3);
  561. Real sum(0);
  562. Real sigma_bar = vtkGrid->GetCellData()->GetScalars()->GetTuple1(ic);
  563. for (int ii=0; ii<4; ++ii) {
  564. for (int jj=0; jj<4; ++jj) {
  565. if (jj == ii) {
  566. // I apply boundary to Stiffness matrix, it's common to take the other approach and apply to the load vector and then
  567. // solve for the boundaries? Is one better? This seems to work, which is nice.
  568. //Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bndryCnt( ID[ii] ); // + sum;
  569. Real bb = vtkGrid->GetPointData()->GetScalars("vtkValidPointMask")->GetTuple(ID[ii])[0];
  570. //std::cout << "bb " << bb << std::endl;
  571. Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bb; // + sum;
  572. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], bdry + GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  573. } else {
  574. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  575. }
  576. // Stiffness matrix no longer contains boundary conditions...
  577. //coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  578. }
  579. }
  580. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  581. }
  582. A.setFromTriplets(coeffs.begin(), coeffs.end());
  583. //A.makeCompressed();
  584. ////////////////////////////////////////////////////////////
  585. // Load vector g, solution vector u
  586. std::cout << "\nBuilding load vector (g)" << std::endl;
  587. VectorXr g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  588. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
  589. // If the G function has been evaluated at each *node*
  590. // --> but still needs to be integrated at the surfaces
  591. // Aha, requires that there is in fact a pointdata memeber // BUG TODO BUG!!!
  592. std::cout << "Point Data ptr " << vtkGrid->GetPointData() << std::endl;
  593. //if ( vtkGrid->GetPointData() != NULL && std::string( vtkGrid->GetPointData()->GetScalars()->GetName() ).compare( std::string("G") ) == 0 ) {
  594. bool pe(false);
  595. bool ne(false);
  596. if ( true ) {
  597. std::cout << "\nUsing G from file" << std::endl;
  598. /* 3D Phi */
  599. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  600. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  601. for (int ii=0; ii<4; ++ii) {
  602. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  603. C(ii, 0) = 1;
  604. C(ii, 1) = pts[0];
  605. C(ii, 2) = pts[1];
  606. C(ii, 3) = pts[2];
  607. }
  608. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  609. //Real V = C.determinant(); // volume of tetrahedra
  610. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  611. int ID[4];
  612. ID[0] = Ids->GetId(0);
  613. ID[1] = Ids->GetId(1);
  614. ID[2] = Ids->GetId(2);
  615. ID[3] = Ids->GetId(3);
  616. /* bad news bears for magnet */
  617. double* pt = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(0);
  618. Real sum(0);
  619. /*
  620. if (!pe) {
  621. if (std::abs(pt[0]) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
  622. sum = 1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0];
  623. pe = true;
  624. }
  625. }*/
  626. if (ID[0] == 26) {
  627. sum = 10;
  628. }
  629. if (ID[0] == 30) {
  630. sum = -10;
  631. }
  632. /*
  633. if (!ne) {
  634. if (std::abs(pt[0]+1.) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
  635. sum = -1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0];
  636. std::cout << "Negative Electroce\n";
  637. ne = true;
  638. }
  639. }
  640. */
  641. //for (int ii=0; ii<4; ++ii) {
  642. //g(ID[ii]) += (V/4.) * ( vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0] ) ;
  643. //if ( std::abs(vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0]) > 1e-3 )
  644. //}
  645. // TODO check Load Vector...
  646. g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
  647. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  648. }
  649. /*
  650. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  651. vtkGrid->GetPoint(ic, r0);
  652. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  653. double g0 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ;
  654. //std::cout << "num conn " << connectedVertices->GetNumberOfIds() << std::endl;
  655. if ( std::abs(g0) > 1e-3 ) {
  656. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  657. int ii = connectedVertices->GetId(i);
  658. vtkGrid->GetPoint(ii, r1);
  659. double g1 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ii)[0] ;
  660. //g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
  661. if ( std::abs(g1) > 1e-3 ) {
  662. g(ic) += CompositeSimpsons2(g1, g0, r1, r0, 1000);
  663. }
  664. //g(ic) += CompositeSimpsons2(g0, r1, r0, 8);
  665. //if ( std::abs(g1) > 1e-3 ) {
  666. //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 8);
  667. //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 100); // / (2*dist(r0,r1)) ;
  668. // g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
  669. //g(ic) += CompositeSimpsons2(g0, r0, r1, 8);
  670. // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
  671. //} //else {
  672. // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
  673. //}
  674. }
  675. }
  676. //g(ic) = 2.* vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ; // Why 2?
  677. //std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  678. }
  679. */
  680. } else if (vtkG) { // VTK implicit function, proceed with care
  681. std::cout << "\nUsing implicit file from file" << std::endl;
  682. // OpenMP right here
  683. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  684. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  685. //vtkGrid->GetPoint(ic, r0);
  686. //g(ic) += vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  687. // std::cout << vtkG->FunctionValue(r0[0], r0[1], r0[2]) << std::endl;
  688. //g(ic) += vtkGrid->GetPointData()->GetScalars()->GetTuple1(ic);// FunctionValue(r0[0], r0[1], r0[2]) ;
  689. /*
  690. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  691. int ii = connectedVertices->GetId(i);
  692. vtkGrid->GetPoint(ii, r1);
  693. g(ic) += CompositeSimpsons2(vtkG, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  694. }
  695. */
  696. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  697. }
  698. } else if (gFcn3) {
  699. std::cout << "\nUsing gFcn3" << std::endl;
  700. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  701. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  702. vtkGrid->GetPoint(ic, r0);
  703. // TODO, test OMP sum reduction here. Is vtkGrid->GetPoint thread safe?
  704. //Real sum(0.);
  705. //#ifdef LEMMAUSEOMP
  706. //#pragma omp parallel for reduction(+:sum)
  707. //#endif
  708. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  709. int ii = connectedVertices->GetId(i);
  710. vtkGrid->GetPoint(ii, r1);
  711. g(ic) += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  712. //sum += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  713. }
  714. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  715. //g(ic) = sum;
  716. }
  717. } else {
  718. std::cout << "No source specified\n";
  719. exit(EXIT_FAILURE);
  720. }
  721. // std::cout << g << std::endl;
  722. //g(85) = 1;
  723. std::cout << "\nSolving" << std::endl;
  724. ////////////////////////////////////////////////////////////
  725. // Solving:
  726. //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
  727. //VectorXr u = chol.solve(g);
  728. //Eigen::SparseLU<Eigen::SparseMatrix<Real, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > solver;
  729. //solver.analyzePattern(A);
  730. //solver.factorize(A);
  731. //VectorXr u = solver.solve(g);
  732. //Eigen::ConjugateGradient<Eigen::SparseMatrix<Real, Eigen::Lower > Eigen::DiagonalPreconditioner > cg;
  733. Eigen::ConjugateGradient< Eigen::SparseMatrix<Real> > cg(A);
  734. //Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
  735. cg.setMaxIterations(3000);
  736. //cg.compute(A);
  737. //std::cout << "Computed " << std::endl;
  738. VectorXr u = cg.solve(g);
  739. std::cout << "#iterations: " << cg.iterations() << std::endl;
  740. std::cout << "estimated error: " << cg.error() << std::endl;
  741. vtkDoubleArray *gArray = vtkDoubleArray::New();
  742. vtkDoubleArray *uArray = vtkDoubleArray::New();
  743. uArray->SetNumberOfComponents(1);
  744. gArray->SetNumberOfComponents(1);
  745. for (int iu = 0; iu<u.size(); ++iu) {
  746. uArray->InsertTuple1(iu, u[iu]);
  747. gArray->InsertTuple1(iu, g[iu]);
  748. }
  749. uArray->SetName("u");
  750. gArray->SetName("g");
  751. vtkGrid->GetPointData()->AddArray(uArray);
  752. vtkGrid->GetPointData()->AddArray(gArray);
  753. vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
  754. Writer->SetInputData(vtkGrid);
  755. Writer->SetFileName(fname.c_str());
  756. Writer->Write();
  757. Writer->Delete();
  758. Surface->Delete();
  759. gArray->Delete();
  760. uArray->Delete();
  761. }
  762. #endif
  763. // Uses simpon's rule to perform a definite integral of a
  764. // function (passed as a pointer). The integration occurs from
  765. // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  766. Real FEM4EllipticPDE::CompositeSimpsons(vtkImplicitFunction* f, Real r0[3], Real r1[3], int n) {
  767. Vector3r R0(r0[0], r0[1], r0[2]);
  768. Vector3r R1(r1[0], r1[1], r1[2]);
  769. // force n to be even
  770. assert(n > 0);
  771. //n += (n % 2);
  772. Real h = dist(r0, r1) / (Real)(n) ;
  773. Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  774. Vector3r dr = (R1 - R0).array() / Real(n);
  775. Vector3r rx;
  776. rx.array() = R0.array() + dr.array();
  777. for (int i=1; i<n; i+=2) {
  778. S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]);
  779. rx += 2.*dr;
  780. }
  781. rx.array() = R0.array() + 2*dr.array();
  782. for (int i=2; i<n-1; i+=2) {
  783. S += 2.*f->FunctionValue(rx[0], rx[1], rx[2]);
  784. rx += 2.*dr;
  785. }
  786. return h * S / 3.;
  787. }
  788. // Uses simpon's rule to perform a definite integral of a
  789. // function (passed as a pointer). The integration occurs from
  790. // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  791. // This is just here as a convenience
  792. Real FEM4EllipticPDE::CompositeSimpsons(const Real& f, Real r0[3], Real r1[3], int n) {
  793. return dist(r0,r1)*f;
  794. /*
  795. Vector3r R0(r0[0], r0[1], r0[2]);
  796. Vector3r R1(r1[0], r1[1], r1[2]);
  797. // force n to be even
  798. assert(n > 0);
  799. //n += (n % 2);
  800. Real h = dist(r0, r1) / (Real)(n) ;
  801. Real S = f + f;
  802. Vector3r dr = (R1 - R0).array() / Real(n);
  803. //Vector3r rx;
  804. //rx.array() = R0.array() + dr.array();
  805. for (int i=1; i<n; i+=2) {
  806. S += 4. * f;
  807. //rx += 2.*dr;
  808. }
  809. //rx.array() = R0.array() + 2*dr.array();
  810. for (int i=2; i<n-1; i+=2) {
  811. S += 2. * f;
  812. //rx += 2.*dr;
  813. }
  814. return h * S / 3.;
  815. */
  816. }
  817. /*
  818. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  819. * test function owned by the FEM implimentaion.
  820. */
  821. Real FEM4EllipticPDE::CompositeSimpsons2(vtkImplicitFunction* f,
  822. Real r0[3], Real r1[3], int n) {
  823. Vector3r R0(r0[0], r0[1], r0[2]);
  824. Vector3r R1(r1[0], r1[1], r1[2]);
  825. // force n to be even
  826. assert(n > 0);
  827. //n += (n % 2);
  828. Real h = dist(r0, r1) / (Real)(n) ;
  829. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  830. Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  831. //Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  832. Vector3r dr = (R1 - R0).array() / Real(n);
  833. Vector3r rx;
  834. rx.array() = R0.array() + dr.array();
  835. for (int i=1; i<n; i+=2) {
  836. S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  837. rx += 2.*dr;
  838. }
  839. rx.array() = R0.array() + 2*dr.array();
  840. for (int i=2; i<n-1; i+=2) {
  841. S += 2. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  842. rx += 2.*dr;
  843. }
  844. return h * S / 3.;
  845. }
  846. /*
  847. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  848. * test function owned by the FEM implimentaion.
  849. */
  850. Real FEM4EllipticPDE::CompositeSimpsons2( Real (*f)(const Real&, const Real&, const Real&),
  851. Real r0[3], Real r1[3], int n) {
  852. Vector3r R0(r0[0], r0[1], r0[2]);
  853. Vector3r R1(r1[0], r1[1], r1[2]);
  854. // force n to be even
  855. assert(n > 0);
  856. //n += (n % 2);
  857. Real h = dist(r0, r1) / (Real)(n) ;
  858. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  859. //Real S = f(r0[0], r0[1], r0[2])*Hat(R0, R0, R1) + f(r1[0], r1[1], r1[2])*Hat(R1, R0, R1);
  860. Real S = f(r0[0], r0[1], r0[2]) + f(r1[0], r1[1], r1[2]);
  861. Vector3r dr = (R1 - R0).array() / Real(n);
  862. Vector3r rx;
  863. rx.array() = R0.array() + dr.array();
  864. for (int i=1; i<n; i+=2) {
  865. S += 4. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  866. rx += 2.*dr;
  867. }
  868. rx.array() = R0.array() + 2*dr.array();
  869. for (int i=2; i<n-1; i+=2) {
  870. S += 2. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  871. rx += 2.*dr;
  872. }
  873. return h * S / 3.;
  874. }
  875. /*
  876. * Performs numerical integration of two functions, one is constant valued f, the other is the FEM
  877. * test function owned by the FEM implimentaion.
  878. */
  879. Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f, Real r0[3], Real r1[3], int n) {
  880. Vector3r R0(r0[0], r0[1], r0[2]);
  881. Vector3r R1(r1[0], r1[1], r1[2]);
  882. // force n to be even
  883. assert(n > 0);
  884. //n += (n % 2);
  885. Real h = dist(r0, r1) / (Real)(n) ;
  886. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  887. Real S = 2*f; //*Hat(R0, R0, R1) + f*Hat(R1, R0, R1);
  888. Vector3r dr = (R1 - R0).array() / Real(n);
  889. Vector3r rx;
  890. rx.array() = R0.array() + dr.array();
  891. for (int i=1; i<n; i+=2) {
  892. S += 4. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  893. rx += 2.*dr;
  894. }
  895. rx.array() = R0.array() + 2*dr.array();
  896. for (int i=2; i<n-1; i+=2) {
  897. S += 2. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  898. rx += 2.*dr;
  899. }
  900. return h * S / 3.;
  901. }
  902. /*
  903. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  904. * test function owned by the FEM implimentaion.
  905. */
  906. Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
  907. Vector3r R0(r0[0], r0[1], r0[2]);
  908. Vector3r R1(r1[0], r1[1], r1[2]);
  909. // force n to be even
  910. assert(n > 0);
  911. //n += (n % 2);
  912. Real h = dist(r0, r1) / (Real)(n) ;
  913. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  914. // NO! We are looking at 1/2 hat often!!! So S = f1!
  915. Real S = f1; //f0*Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
  916. Vector3r dr = (R1 - R0).array() / Real(n);
  917. // linear interpolate function
  918. //Vector3r rx;
  919. //rx.array() = R0.array() + dr.array();
  920. for (int i=1; i<n; i+=2) {
  921. double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
  922. S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0) ;
  923. }
  924. //rx.array() = R0.array() + 2*dr.array();
  925. for (int i=2; i<n-1; i+=2) {
  926. double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
  927. S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0);
  928. }
  929. return h * S / 3.;
  930. }
  931. /*
  932. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  933. * test function owned by the FEM implimentaion.
  934. */
  935. Real FEM4EllipticPDE::CompositeSimpsons3( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
  936. Vector3r R0(r0[0], r0[1], r0[2]);
  937. Vector3r R1(r1[0], r1[1], r1[2]);
  938. // force n to be even
  939. assert(n > 0);
  940. //n += (n % 2);
  941. Real h = dist(r0, r1) / (Real)(n) ;
  942. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  943. // NO! We are looking at 1/2 hat often!!! So S = f1!
  944. Real S = f0+f1; //Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
  945. Vector3r dr = (R1 - R0).array() / Real(n);
  946. // linear interpolate function
  947. //Vector3r rx;
  948. //rx.array() = R0.array() + dr.array();
  949. for (int i=1; i<n; i+=2) {
  950. double fx = 1;// f0 + (f1 - f0) * ((i*h)/(h*n));
  951. S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1) * Hat(R1.array() + i*dr.array(), R1, R0) ;
  952. }
  953. //rx.array() = R0.array() + 2*dr.array();
  954. for (int i=2; i<n-1; i+=2) {
  955. double fx = 1; // f0 + (f1 - f0) * ((i*h)/(h*n));
  956. S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1)* Hat(R1.array() + i*dr.array(), R1, R0);
  957. }
  958. return h * S / 3.;
  959. }
  960. //--------------------------------------------------------------------------------------
  961. // Class: FEM4EllipticPDE
  962. // Method: Hat
  963. //--------------------------------------------------------------------------------------
  964. Real FEM4EllipticPDE::Hat ( const Vector3r& r, const Vector3r& r0, const Vector3r& r1 ) {
  965. //return (r-r0).norm() / (r1-r0).norm() ;
  966. return dist(r, r0) / dist(r1, r0) ;
  967. } // ----- end of method FEM4EllipticPDE::Hat -----
  968. } // ----- end of Lemma name -----