Galerkin FEM for elliptic PDEs
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

sphere.geo 4.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. /* This file is part of Lemma, a geophysical modelling and inversion API.
  2. * More information is available at http://lemmasoftware.org
  3. */
  4. /* This Source Code Form is subject to the terms of the Mozilla Public
  5. * License, v. 2.0. If a copy of the MPL was not distributed with this
  6. * file, You can obtain one at http://mozilla.org/MPL/2.0/.
  7. */
  8. /**
  9. * @file
  10. * @date 08/08/2014 12:19:20 PM
  11. * @version $Id$
  12. * @author Trevor Irons (ti)
  13. * @email Trevor.Irons@xri-geo.com
  14. * @copyright Copyright (c) 2014, XRI Geophysics, LLC
  15. * @copyright Copyright (c) 2014, Trevor Irons
  16. */
  17. D0 = 10; // Top of magnet
  18. D1 = 11; // Bottom of magnet
  19. radius = 2.25; // Radius of the damn thing
  20. lc = radius; // 0.25; // Target element size
  21. // Total Solution Space
  22. Box = 30*radius; // The down side of potential
  23. X0 = -Box;
  24. X1 = Box;
  25. Y0 = -Box;
  26. Y1 = Box;
  27. Z0 = -Box;
  28. Z1 = Box;
  29. cellSize=lc; //300;
  30. dd = 0 ; // 1e-5; //cellSize; // .01;
  31. pio2=Pi/2;
  32. /////////////////////////////////////
  33. // Large Bounding box
  34. pp = newp;
  35. Point(pp) = {X0, Y0, Z0, lc};
  36. Point(pp+1) = {X1, Y0, Z0, lc};
  37. Point(pp+2) = {X1, Y1, Z0, lc};
  38. Point(pp+3) = {X0, Y1, Z0, lc};
  39. lv = newl;
  40. Line(lv) = {pp,pp+1};
  41. Line(lv+1) = {pp+1,pp+2};
  42. Line(lv+2) = {pp+2,pp+3};
  43. Line(lv+3) = {pp+3,pp};
  44. Line Loop(lv+4) = {lv, lv+1, lv+2, lv+3};
  45. // Hard coded doom
  46. Plane Surface(125) = {lv+4};
  47. //v = newv;
  48. v[] = Extrude {0, 0, Z1-Z0} { Surface{125}; };
  49. // Calculate offset effect
  50. theta = Asin(dd/radius);
  51. rr = radius * Cos(theta);
  52. ///////////////////////////////////
  53. // Positive half sphere
  54. // create inner 1/8 shell
  55. p0 = newp;
  56. Point(p0) = { 0, 0, 0, cellSize}; // origin
  57. Point(p0+1) = { -rr, 0, dd, cellSize};
  58. Point(p0+2) = { 0, rr, dd, cellSize};
  59. Point(p0+3) = { 0, 0, radius, cellSize};
  60. Point(p0+4) = { 0, 0, dd, cellSize}; // origin
  61. c0 = newc;
  62. Circle(c0 ) = {p0+1, p0+4, p0+2}; // Tricky, This one needs to be offset!
  63. Circle(c0+1) = {p0+3, p0, p0+1};
  64. Circle(c0+2) = {p0+3, p0, p0+2};
  65. Line Loop(10) = {c0, -(c0+2), c0+1} ;
  66. Ruled Surface (60) = {10};
  67. ////////////////////////////////////////////////////////////
  68. // Negative half sphere
  69. p = newp;
  70. Point( p) = { 0, 0, 0, cellSize};
  71. Point(p+1) = { -rr, 0, -dd, cellSize};
  72. Point(p+2) = { 0, rr, -dd, cellSize};
  73. Point(p+3) = { 0, 0, -radius, cellSize};
  74. Point(p+4) = { 0, 0, -dd, cellSize};
  75. cc = newc;
  76. Circle(cc ) = {p+1, p+4, p+2};
  77. Circle(cc+1) = {p+3, p, p+1};
  78. Circle(cc+2) = {p+3, p, p+2};
  79. Circle(cc+3) = {p+3, p, p+2};
  80. Circle(cc+4) = {p+3, p, p+2};
  81. Circle(cc+5) = {p+3, p, p+2};
  82. ccl = newl;
  83. Line(ccl) = { p0+3, p+3 };
  84. Line Loop(11) = {cc, -(cc+2), cc+1} ;
  85. Ruled Surface (61) = {11};
  86. // create remaining 7/8 inner shells
  87. t1[] = Rotate {{0,0,1},{0,0,0},pio2 } {Duplicata{Surface{60};}};
  88. t2[] = Rotate {{0,0,1},{0,0,0},pio2*2} {Duplicata{Surface{60};}};
  89. t3[] = Rotate {{0,0,1},{0,0,0},pio2*3} {Duplicata{Surface{60};}};
  90. //
  91. t4[] = Rotate {{0,0,1},{0,0,0},pio2 } {Duplicata{Surface{61};}};
  92. t5[] = Rotate {{0,0,1},{0,0,0},pio2*2} {Duplicata{Surface{61};}};
  93. t6[] = Rotate {{0,0,1},{0,0,0},pio2*3} {Duplicata{Surface{61};}};
  94. /* This is GOOD */
  95. Surface{60} In Volume{v[1]};
  96. Surface{t1[0]} In Volume{v[1]};
  97. Surface{t2[0]} In Volume{v[1]};
  98. Surface{t3[0]} In Volume{v[1]};
  99. Surface{61} In Volume{v[1]};
  100. Surface{t4[0]} In Volume{v[1]};
  101. Surface{t5[0]} In Volume{v[1]};
  102. Surface{t6[0]} In Volume{v[1]};
  103. ///////////////////////////////////////////////
  104. // Attractor Field
  105. Field[1] = Attractor;
  106. Field[1].NodesList = {p}; //0, p0+1, p0+2, p0+3, p0+4, p, p+1, p+2, p+3, p+4};
  107. //Field[2] = MathEval;
  108. //Field[2].F = Sprintf("(2.25 - F1)^2 + %g", cellSize*10 ); // WORKS
  109. //Field[2].F = Sprintf("(%g - F1)^2 + %g", radius, 2*cellSize );
  110. //Background Field = 2;
  111. // Don't extend the elements sizes from the boundary inside the domain
  112. //Mesh.CharacteristicLengthExtendFromBoundary = 0;
  113. Physical Volume(1) = {v[1]};
  114. // To create the mesh run
  115. // gmsh sphere.gmsh -2 -v 0 -format msh -o sphere.msh
  116. //gmsh -3 -format msh1 -o outfile.msh sphere.geo