Galerkin FEM for elliptic PDEs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

FEM4EllipticPDE.h 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. // ===========================================================================
  2. //
  3. // Filename: FEM4EllipticPDE.h
  4. //
  5. // Created: 08/16/12 18:19:41
  6. // Compiler: Tested with g++, icpc, and MSVC 2010
  7. //
  8. // Author: Trevor Irons (ti)
  9. //
  10. // Organisation: Colorado School of Mines (CSM)
  11. // United States Geological Survey (USGS)
  12. //
  13. // Email: tirons@mines.edu, tirons@usgs.gov
  14. //
  15. // This program is free software: you can redistribute it and/or modify
  16. // it under the terms of the GNU General Public License as published by
  17. // the Free Software Foundation, either version 3 of the License, or
  18. // (at your option) any later version.
  19. //
  20. // This program is distributed in the hope that it will be useful,
  21. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  23. // GNU General Public License for more details.
  24. //
  25. // You should have received a copy of the GNU General Public License
  26. // along with this program. If not, see <http://www.gnu.org/licenses/>.
  27. //
  28. // ===========================================================================
  29. /**
  30. @file
  31. @author Trevor Irons
  32. @date 08/16/12
  33. @version $Rev$
  34. **/
  35. #ifndef FEM4ELLIPTICPDE_INC
  36. #define FEM4ELLIPTICPDE_INC
  37. #include "LemmaObject.h"
  38. #include "vtkImplicitFunction.h"
  39. #include "vtkDataSet.h"
  40. #include "vtkXMLDataSetWriter.h"
  41. #include "vtkSmartPointer.h"
  42. #include "vtkIdList.h"
  43. #include "vtkCell.h"
  44. #include "vtkDoubleArray.h"
  45. #include "vtkPointData.h"
  46. #include "vtkDataSetSurfaceFilter.h"
  47. #include "vtkCellArray.h"
  48. #include "vtkCellData.h"
  49. #include <Eigen/IterativeLinearSolvers>
  50. #include <Eigen/SparseLU>
  51. #include "DCSurvey.h"
  52. namespace Lemma {
  53. /** @defgroup FEM4EllipticPDE
  54. @brief Finite element solver for elliptic PDE's
  55. @details Uses Galerkin method.
  56. */
  57. /** \addtogroup FEM4EllipticPDE
  58. @{
  59. */
  60. // ===================================================================
  61. // Class: FEM4EllipticPDE
  62. /**
  63. @class FEM4EllipticPDE
  64. @brief Galerkin FEM solver for Elliptic PDE problems
  65. @details Solves problems of the type
  66. \f[ - \nabla \cdot ( \sigma(\mathbf{r}) \nabla u(\mathbf{r}) ) = g(\mathbf{r})
  67. \f]
  68. */
  69. class FEM4EllipticPDE : public LemmaObject {
  70. friend std::ostream &operator<<(std::ostream &stream,
  71. const FEM4EllipticPDE &ob);
  72. public:
  73. // ==================== LIFECYCLE =======================
  74. /** Returns a pointer to a new object of type FEM4EllipticPDE.
  75. * It allocates all necessary memory.
  76. */
  77. static FEM4EllipticPDE* New();
  78. /** Deletes this object. Delete also disconnects any
  79. * attachments to this object.
  80. */
  81. void Delete();
  82. #ifdef HAVE_YAMLCPP
  83. /**
  84. * Uses YAML to serialize this object.
  85. * @return a YAML::Node
  86. */
  87. YAML::Node Serialize() const;
  88. /**
  89. * Constructs an object from a YAML::Node.
  90. */
  91. static FEM4EllipticPDE* DeSerialize(const YAML::Node& node);
  92. #endif
  93. // ==================== OPERATORS =======================
  94. // ==================== OPERATIONS =======================
  95. /** Sets the vtkImplictFunction that is used as sigma in
  96. \f$ - \nabla \cdot ( \sigma(\mathbf{r}) \nabla u(\mathbf{r}) ) = g(\mathbf{r})
  97. \f$. If this is not set, sigma evaluates as 1.
  98. */
  99. void SetSigmaFunction(vtkImplicitFunction* sigma);
  100. /** Sets the step to be used in applying boundary conditions.
  101. */
  102. void SetBoundaryStep(const Real& h);
  103. /** Sets the vtkImplictFunction that is used
  104. */
  105. void SetGFunction(vtkImplicitFunction* G);
  106. /** Uses a function pointer instead of a vtkImplicitFunction. For functions that can
  107. * be written in closed form, this can be much faster and more accurate then interpolating
  108. * off a grid.
  109. */
  110. void SetGFunction( Real (*pFcn3)(const Real&, const Real&, const Real&) );
  111. /** Sets the vtkDataSet that defines the calculation grid.
  112. */
  113. void SetGrid(vtkDataSet* Grid);
  114. /** Sets up a DC problem with a survey
  115. * @param[in] ij is the injection index
  116. */
  117. void SetupDC(DCSurvey* Survey, const int& ij);
  118. /** Sets up the potential problem from the VTK file
  119. */
  120. void SetupPotential();
  121. /** Performs solution */
  122. void Solve(const std::string& fname);
  123. /** Performs solution */
  124. void SolveOLD2(const std::string& fname);
  125. // ==================== ACCESS =======================
  126. // ==================== INQUIRY =======================
  127. protected:
  128. // ==================== LIFECYCLE =======================
  129. /// Default protected constructor.
  130. FEM4EllipticPDE (const std::string& cname);
  131. #ifdef HAVE_YAMLCPP
  132. /** Protected DeDerializing constructor, use factory DeSerialize method*/
  133. FEM4EllipticPDE (const YAML::Node& node);
  134. #endif
  135. /** Default protected constructor. */
  136. ~FEM4EllipticPDE ();
  137. /**
  138. * @copybrief LemmaObject::Release()
  139. * @copydetails LemmaObject::Release()
  140. */
  141. void Release();
  142. // ==================== OPERATIONS =======================
  143. /** Used internally to construct stiffness matrix, A
  144. */
  145. void ConstructAMatrix();
  146. /* Used internally to construct the load vector, g
  147. */
  148. //void ConstructLoadVector();
  149. // This function is copyright (C) 2012 Joseph Capriotti
  150. /**
  151. Returns a vtkIdList of points in member vtkGrid connected to point ido.
  152. @param[in] ido is the point of interest
  153. @param[in] grid is a pointer to a vtkDataSet
  154. */
  155. vtkSmartPointer<vtkIdList> GetConnectedPoints(const int& id0);
  156. /** Uses Simpson's rule to numerically integrate
  157. * (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  158. */
  159. Real CompositeSimpsons(vtkImplicitFunction* f, Real r0[3], Real r1[3], int numInt);
  160. /** Uses Simpson's rule to numerically integrate
  161. * (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  162. * this method is for a static f
  163. */
  164. Real CompositeSimpsons(const Real& f, Real r0[3], Real r1[3], int numInt);
  165. /**
  166. * Uses Simpson's rule to numerically integrate two functions in 1 dimension over the points
  167. * r0 and r1
  168. */
  169. Real CompositeSimpsons2(vtkImplicitFunction* f, Real r0[3], Real r1[3], int numInt);
  170. /**
  171. * Uses Simpson's rule to numerically integrate two functions in 1 dimension over the points
  172. * r0 and r1, uses the Hat function and the function pointer fPtr
  173. */
  174. Real CompositeSimpsons2( Real (*fPtr)(const Real&, const Real&, const Real&), Real r0[3], Real r1[3], int numInt);
  175. /**
  176. * Uses Simpson's rule to numerically integrate two functions in 1 dimension over the points
  177. * r0 and r1, uses the Hat function. Assumes a constand function value f
  178. */
  179. Real CompositeSimpsons2( const Real& f, Real r0[3], Real r1[3], int numInt);
  180. /**
  181. * Uses Simpson's rule to numerically integrate two functions in 1 dimension over the points
  182. * r0 and r1, uses the Hat function. Assumes a linear function from f0 to f1.
  183. */
  184. Real CompositeSimpsons2( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int numInt);
  185. /**
  186. * Uses Simpson's rule to numerically integrate three functions in 1 dimension over the points
  187. * r0 and r1, uses two Hat functions. Assumes a linear function from f0 to f1.
  188. */
  189. Real CompositeSimpsons3( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int numInt);
  190. /** Hat function for use in Galerkin FEM method, actually a 1/2 Hat.
  191. */
  192. //Real hat(Real r[3], Real ri[3], Real rm1[3] );
  193. Real Hat(const Vector3r &r, const Vector3r& ri, const Vector3r& rm1 );
  194. /** Computes distance between r0 and r1
  195. */
  196. Real dist(Real r0[3], Real r1[3]);
  197. /** Computes distance between r0 and r1
  198. */
  199. Real dist(const Vector3r& r0, const Vector3r& r1);
  200. /** Sets up the potential problem from the VTK file
  201. */
  202. void SetupLineSourcePotential();
  203. /** Sets up the potential problem from the VTK file
  204. */
  205. void SetupSurfaceSourcePotential();
  206. /** Sets up the potential problem from the VTK file
  207. */
  208. void SetupPointSourcePotential();
  209. /** Sets up the potential problem from the VTK file
  210. */
  211. void SetupVolumeSourcePotential();
  212. // ==================== DATA MEMBERS =========================
  213. /** The effective step at the boundary condition. Defaults to 1
  214. */
  215. Real BndryH;
  216. /** The sigma value at the boundary condition. Defaults to 1
  217. */
  218. Real BndrySigma;
  219. /** Implicit function defining the \f$\sigma\f$ term in
  220. \f$ - \nabla \cdot ( \sigma(\mathbf{r}) \nabla u(\mathbf{r}) ) = g(\mathbf{r})
  221. \f$.
  222. If set to 1, the Poisson equation is solved. Any type of vtkImplicitFunction may
  223. be used, including vtkImplicitDataSet.
  224. */
  225. vtkSmartPointer<vtkImplicitFunction> vtkSigma;
  226. /** Implicit function defining the \f$g\f$ term in
  227. \f$ - \nabla \cdot ( \sigma(\mathbf{r}) \nabla u(\mathbf{r}) ) = g(\mathbf{r})
  228. \f$.
  229. Typically this is used to define the source term.
  230. */
  231. vtkSmartPointer<vtkImplicitFunction> vtkG;
  232. /** Any type of vtkDataSet may be used as a calculation Grid */
  233. vtkSmartPointer<vtkDataSet> vtkGrid;
  234. /** Function pointer to function describing g */
  235. Real (*gFcn3)(const Real&, const Real&, const Real&);
  236. Eigen::SparseMatrix<Real> A;
  237. VectorXr g;
  238. private:
  239. }; // ----- end of class FEM4EllipticPDE -----
  240. /*! @} */
  241. } // ----- end of Lemma name -----
  242. #endif // ----- #ifndef FEM4ELLIPTICPDE_INC -----