123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936 |
- // ===========================================================================
- //
- // Filename: bicgstab.h
- //
- // Description:
- //
- // Version: 0.0
- // Created: 10/27/2009 03:15:06 PM
- // Revision: none
- // Compiler: g++ (c++)
- //
- // Author: Trevor Irons (ti)
- //
- // Organisation: Colorado School of Mines (CSM)
- // United States Geological Survey (USGS)
- //
- // Email: tirons@mines.edu, tirons@usgs.gov
- //
- // This program is free software: you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program. If not, see <http://www.gnu.org/licenses/>.
- //
- // ===========================================================================
-
- #include <Eigen/Core>
- #include <Eigen/Sparse>
-
- #ifdef CHOLMODPRECONDITION
- #include <Eigen/CholmodSupport>
- #endif // CHOLMODPRECONDITION
-
- //#include "unsupported/Eigen/IterativeSolvers"
- //#include <unsupported/Eigen/SuperLUSupport>
-
- #include <iostream>
- #include <string>
- #include <complex>
- #include <fstream>
- #include "lemma.h"
- #include "timer.h"
-
- using namespace Eigen;
- using namespace Lemma;
-
- //typedef Eigen::VectorXcd VectorXcr;
- typedef Eigen::SparseMatrix<Complex> SparseMat;
-
-
- // On Input
- // A = Matrix
- // B = Right hand side
- // X = initial guess, and solution
- // maxit = maximum Number of iterations
- // tol = error tolerance
- // On Output
- // X real solution vector
- // errorn = Real error norm
- int bicgstab(const SparseMat &A, const SparseMat &M, const VectorXcr &b, VectorXcr &x,
- int &max_it, Real &tol, Real &errorn, int &iter_done,
- const bool& banner = true) {
-
- Complex omega, rho, rho_1, alpha, beta;
- Real bnrm2, eps, errmin;
- int n, iter; //, istat;
-
- // Determine size of system and init vectors
- n = x.size();
- VectorXcr r(n);
- VectorXcr r_tld(n);
- VectorXcr p(n);
- VectorXcr v(n);
- VectorXcr p_hat(n);
- VectorXcr s(n);
- VectorXcr s_hat(n);
- VectorXcr t(n);
- VectorXcr xmin(n);
-
- if (banner) {
- std::cout << "Start BiCGStab, memory needed: "
- << (sizeof(Complex)*(9+2)*n/(1024.*1024*1024)) << " [Gb]\n";
- }
-
- // Initialise
- iter_done = 0;
- v.setConstant(0.); // not necessary I don't think
- t.setConstant(0.);
- eps = 1e-100;
-
- bnrm2 = b.norm();
- if (bnrm2 == 0) {
- x.setConstant(0.0);
- errorn = 0;
- std::cerr << "Trivial case of Ax = b, where b is 0\n";
- return (0);
- }
-
- // If there is an initial guess
- if ( x.norm() ) {
- r = b - A.selfadjointView<Eigen::Upper>()*x;
- //r = b - A*x;
- } else {
- r = b;
- }
-
- errorn = r.norm() / bnrm2;
- omega = 1.;
- r_tld = r;
- errmin = 1e30;
-
- // Get down to business
- for (iter=0; iter<max_it; ++iter) {
-
- rho = r_tld.dot(r);
- if ( abs(rho) < eps) return (0);
-
- if (iter > 0) {
- beta = (rho/rho_1) * (alpha/omega);
- p = r.array() + beta*(p.array()-omega*v.array()).array();
- } else {
- p = r;
- }
-
- // Use pseudo inverse to get approximate answer
- //#pragma omp sections
- p_hat = M*p;
- //v = A*p_hat; // TODO double check
- v = A.selfadjointView<Eigen::Upper>()*p_hat; // TODO double check
-
- alpha = rho / r_tld.dot(v);
- s = r.array() - alpha*v.array();
- errorn = s.norm()/bnrm2;
-
- if (errorn < tol && iter > 1) {
- x.array() += alpha*p_hat.array();
- return (0);
- }
-
- s_hat = M*s;
- t = A.selfadjointView<Eigen::Upper>()*s_hat;
- //t = A*s_hat;
-
- omega = t.dot(s) / t.dot(t);
- x.array() += alpha*p_hat.array() + omega*s_hat.array();
- r = s.array() - omega*t.array();
- errorn = r.norm() / bnrm2;
- iter_done = iter;
-
- if (errorn < errmin) {
- // remember the model with the smallest norm
- errmin = errorn;
- xmin = x;
- }
-
- if ( errorn <= tol ) return (0);
- if ( abs(omega) < eps ) return (0);
- rho_1 = rho;
-
- }
- return (0);
- }
-
- template <typename Preconditioner>
- bool preconditionedBiCGStab(const SparseMat &A, const Preconditioner &M,
- const Ref< VectorXcr const > b,
- Ref <VectorXcr > x,
- const int &max_it, const Real &tol,
- Real &errorn, int &iter_done) {
-
- Complex omega, rho, rho_1, alpha, beta;
- Real bnrm2, eps;
- int n, iter;
- Real tol2 = tol*tol;
-
- // Determine size of system and init vectors
- n = x.size();
-
- VectorXcd r(n);
- VectorXcd r_tld(n);
- VectorXcd p(n);
- VectorXcd s(n);
- VectorXcd s_hat(n);
- VectorXcd p_hat(n);
- VectorXcd v = VectorXcr::Zero(n);
- VectorXcd t = VectorXcr::Zero(n);
-
- //std::cout << "Start BiCGStab, memory needed: "
- // << (sizeof(Complex)*(8+2)*n/(1024.*1024)) / (1024.) << " [Gb]\n";
-
- // Initialise
- iter_done = 0;
- eps = 1e-100;
-
- bnrm2 = b.squaredNorm();
- if (bnrm2 == 0) {
- x.setConstant(0.0);
- errorn = 0;
- std::cerr << "Trivial case of Ax = b, where b is 0\n";
- return (false);
- }
-
- // If there is an initial guess
- if ( x.squaredNorm() ) {
- r = b - A.selfadjointView<Eigen::Upper>()*x;
- } else {
- r = b;
- }
-
- errorn = r.squaredNorm() / bnrm2;
- omega = 1.;
- r_tld = r;
-
- // Get down to business
- for (iter=0; iter<max_it; ++iter) {
-
- rho = r_tld.dot(r);
- if (abs(rho) < eps) {
- std::cerr << "arbitrary orthogonality issue in bicgstab\n";
- std::cerr << "consider eigen restarting\n";
- return (false);
- }
-
- if (iter > 0) {
- beta = (rho/rho_1) * (alpha/omega);
- p = r + beta*(p-omega*v);
- } else {
- p = r;
- }
-
- p_hat = M.solve(p);
- v.noalias() = A.selfadjointView<Eigen::Upper>()*p_hat;
-
- alpha = rho / r_tld.dot(v);
- s = r - alpha*v;
- errorn = s.squaredNorm()/bnrm2;
-
- if (errorn < tol2 && iter > 1) {
- x = x + alpha*p_hat;
- errorn = std::sqrt(errorn);
- return (true);
- }
-
- s_hat = M.solve(s);
- t.noalias() = A.selfadjointView<Eigen::Upper>()*s_hat;
-
- omega = t.dot(s) / t.dot(t);
- x += alpha*p_hat + omega*s_hat;
- r = s - omega*t;
- errorn = r.squaredNorm() / bnrm2;
- iter_done = iter;
-
- if ( errorn <= tol2 || abs(omega) < eps) {
- errorn = std::sqrt(errorn);
- return (true);
- }
-
- rho_1 = rho;
- }
- return (false);
- }
-
- template <typename Preconditioner>
- bool preconditionedSCBiCG(const SparseMat &A, const Preconditioner &M,
- const Ref< VectorXcr const > b,
- Ref <VectorXcr > x,
- const int &max_iter, const Real &tol,
- Real &errorn, int &iter_done) {
-
- Real resid;
- VectorXcr p, z, q;
- Complex alpha, beta, rho, rho_1;
-
- Real normb = b.norm( );
- VectorXcr r = b - A*x;
-
- if (normb == 0.0) normb = 1;
-
- if ((resid = r.norm( ) / normb) <= tol) {
- errorn = resid;
- iter_done = 0;
- return 0;
- }
-
- for (int i = 1; i <= max_iter; i++) {
- z = M.solve(r);
- rho = r.dot(z);
-
- if (i == 1) p = z;
- else {
- beta = rho / rho_1;
- p = z + beta * p;
- }
-
- q = A*p;
- alpha = rho / p.dot(q);
-
- x += alpha * p;
- r -= alpha * q;
- std::cout << "resid\t" << resid << std::endl;
- if ((resid = r.norm( ) / normb) <= tol) {
- errorn = resid;
- iter_done = i;
- return 0;
- }
-
- rho_1 = rho;
- }
-
- errorn = resid;
-
- return (false);
- }
-
-
- /** \internal Low-level conjugate gradient algorithm
- * \param mat The matrix A
- * \param rhs The right hand side vector b
- * \param x On input and initial solution, on output the computed solution.
- * \param precond A preconditioner being able to efficiently solve for an
- * approximation of Ax=b (regardless of b)
- * \param iters On input the max number of iteration, on output the number of performed iterations.
- * \param tol_error On input the tolerance error, on output an estimation of the relative error.
- */
- template<typename Rhs, typename Dest, typename Preconditioner>
- EIGEN_DONT_INLINE
- void conjugateGradient(const SparseMat& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, int& iters,
- typename Dest::RealScalar& tol_error)
- {
- using std::sqrt;
- using std::abs;
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
-
- RealScalar tol = tol_error;
- int maxIters = iters;
-
- int n = mat.cols();
-
- VectorType residual = rhs - mat.selfadjointView<Eigen::Upper>() * x; //initial residual
-
- RealScalar rhsNorm2 = rhs.squaredNorm();
- if(rhsNorm2 == 0)
- {
- x.setZero();
- iters = 0;
- tol_error = 0;
- return;
- }
- RealScalar threshold = tol*tol*rhsNorm2;
- RealScalar residualNorm2 = residual.squaredNorm();
- if (residualNorm2 < threshold)
- {
- iters = 0;
- tol_error = sqrt(residualNorm2 / rhsNorm2);
- return;
- }
-
- VectorType p(n);
- p = precond.solve(residual); //initial search direction
-
- VectorType z(n), tmp(n);
- RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
- int i = 0;
- while(i < maxIters)
- {
- tmp.noalias() = mat.selfadjointView<Eigen::Upper>() * p; // the bottleneck of the algorithm
-
- Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
- x += alpha * p; // update solution
- residual -= alpha * tmp; // update residue
-
- residualNorm2 = residual.squaredNorm();
- if(residualNorm2 < threshold)
- break;
-
- z = precond.solve(residual); // approximately solve for "A z = residual"
-
- RealScalar absOld = absNew;
- absNew = numext::real(residual.dot(z)); // update the absolute value of r
- RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
- p = z + beta * p; // update search direction
- i++;
- }
- tol_error = sqrt(residualNorm2 / rhsNorm2);
- iters = i;
- }
-
- // // Computes implicit
- // VectorXcr implicitDCInvBPhi (const SparseMat& D, const SparseMat& C,
- // const SparseMat& B, const SparseMat& MC,
- // const VectorXcr& Phi, Real& tol,
- // int& max_it) {
- // int iter_done(0);
- // Real errorn(0);
- // VectorXcr b = B*Phi;
- // VectorXcr y = VectorXcr::Zero(C.rows()) ; // = C^1*b;
- // bicgstab(C, MC, b, y, max_it, tol, errorn, iter_done, false);
- // //std::cout << "Temp " << errorn << std::endl;
- // return D*y;
- // }
-
- // Computes implicit
- VectorXcr implicitDCInvBPhi (const SparseMat& D, const SparseMat& C,
- const VectorXcr& ioms, const SparseMat& MC,
- const VectorXcr& Phi, Real& tol,
- int& max_it) {
- int iter_done(0);
- Real errorn(0);
- VectorXcr b = (ioms).asDiagonal() * (D.transpose()*Phi);
- VectorXcr y = VectorXcr::Zero(C.rows()) ; // = C^1*b;
- bicgstab(C, MC, b, y, max_it, tol, errorn, iter_done, false);
- //std::cout << "Temp " << errorn << std::endl;
- max_it = iter_done;
- return D*y;
- }
-
- // Computes implicit
- template <typename Preconditioner>
- VectorXcr implicitDCInvBPhi2 (const SparseMat& D, const SparseMat& C,
- const Ref<VectorXcr const> ioms, const Preconditioner& solver,
- const Ref<VectorXcr const> Phi, Real& tol,
- int& max_it) {
-
- VectorXcr b = (ioms).asDiagonal() * (D.transpose()*Phi);
- VectorXcr y = VectorXcr::Zero(C.rows()) ; // = C^1*b;
-
- // Home Made
- //int iter_done(0);
- //Real errorn(0);
- //preconditionedBiCGStab(C, solver, b, y, max_it, tol, errorn, iter_done); //, false); // Jacobi M
- //max_it = iter_done;
-
- // Eigen BiCGStab
- Eigen::BiCGSTAB<SparseMatrix<Complex> > BiCG;
- BiCG.compute( C ); // TODO move this out of this loop!
- y = BiCG.solve(b);
- max_it = BiCG.iterations();
- tol = BiCG.error();
-
- // Direct
- /*
- std::cout << "Computing LLT" << std::endl;
- Eigen::SimplicialLLT<SparseMatrix<Complex>, Eigen::Upper, Eigen::AMDOrdering<int> > LLT;
- LLT.compute(C);
- max_it = 1;
- std::cout << "Computed LLT" << std::endl;
- y = LLT.solve(b);
- */
-
- return D*y;
- }
-
- // Computes implicit
- //template <typename Solver>
- template < typename Solver >
- inline VectorXcr implicitDCInvBPhi3 (const SparseMat& D, const Solver& solver,
- const Ref<VectorXcr const> ioms,
- const Ref<VectorXcr const> Phi, Real& tol,
- int& max_it) {
- VectorXcr b = (ioms).asDiagonal() * (D.transpose()*Phi);
- VectorXcr y = solver.solve(b);
- max_it = 0;
- //max_it = solver.iterations();
- //errorn = solver.error();
- return D*y;
- }
-
-
- // // Simple extraction of indices in idx into reduceed array x1
- // void vmap( const Ref<VectorXcr const> x0, Ref<VectorXcr> x1, const std::vector<int>& idx ) {
- // for (unsigned int ii=0; ii<idx.size(); ++ii) {
- // x1(ii) = x0(idx[ii]);
- // }
- // }
-
- // Simple extraction of indices in idx into reduceed array x1
- VectorXcr vmap( const Ref<VectorXcr const> x0, const std::vector<int>& idx ) {
- VectorXcr x1 = VectorXcr::Zero( idx.size() );
- for (unsigned int ii=0; ii<idx.size(); ++ii) {
- x1(ii) = x0(idx[ii]);
- }
- return x1;
- }
-
- // reverse of above
- void ivmap( Ref<VectorXcr > x0, const Ref<VectorXcr const> x1, const std::vector<int>& idx ) {
- for (unsigned int ii=0; ii<idx.size(); ++ii) {
- x0(idx[ii]) = x1(ii);
- }
- }
-
-
- // On Input
- // A = Matrix
- // B = Right hand side
- // X = initial guess, and solution
- // maxit = maximum Number of iterations
- // tol = error tolerance
- // On Output
- // X real solution vector
- // errorn = Real error norm
- template < typename CSolver >
- int implicitbicgstab(//const SparseMat& D,
- //const SparseMat& C,
- const Ref< Eigen::SparseMatrix<Complex> const > D,
- const std::vector<int>& idx,
- const Ref< VectorXcr const > ioms,
- const Ref< VectorXcr const > rhs,
- Ref <VectorXcr> phi,
- CSolver& solver,
- int &max_it, const Real &tol, Real &errorn, int &iter_done, ofstream& logio) {
-
- logio << "using the preconditioned implicit solver" << std::endl;
-
- Complex omega, rho, rho_1, alpha, beta;
- Real tol2;
- int iter, max_it2, max_it1;
-
- // Look at reduced problem
- VectorXcr rhs2 = vmap(rhs, idx);
- VectorXcr phi2 = vmap(phi, idx);
-
- // Determine size of system and init vectors
- int n = idx.size(); // was phi.size();
- VectorXcr r(n);
- VectorXcr r_tld(n);
- VectorXcr p(n);
- VectorXcr s(n);
- VectorXcr v = VectorXcr::Zero(n);
- VectorXcr t = VectorXcr::Zero(n);
-
- // TODO, refigure for implicit large system
- // std::cout << "Start BiCGStab, memory needed: "
- // << (sizeof(Complex)*(9+2)*n/(1024.*1024*1024)) << " [Gb]\n";
-
- // Initialise
- iter_done = 0;
- Real eps = 1e-100;
-
- Real bnrm2 = rhs.norm();
- if (bnrm2 == 0) {
- phi.setConstant(0.0);
- errorn = 0;
- std::cerr << "Trivial case of Ax = b, where b is 0\n";
- return (0);
- }
-
- // If there is an initial guess
- if ( phi.norm() ) {
- tol2 = tol;
- max_it2 = 50000;
- //r = rhs - implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2);
- //r = rhs - implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2);
- r = rhs2 - vmap( implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2), idx );
- } else {
- r = vmap(rhs, idx);
- }
-
- jsw_timer timer;
-
- errorn = r.norm() / bnrm2;
- omega = 1.;
- r_tld = r;
- Real errornold = 1e14;
- // Get down to business
- for (iter=0; iter<max_it; ++iter) {
-
- timer.begin();
-
- rho = r_tld.dot(r);
- if (abs(rho) < eps) {
- ivmap( phi, phi2, idx );
- return (0);
- }
-
- if (iter > 0) {
- beta = (rho/rho_1) * (alpha/omega);
- p = r.array() + beta*(p.array()-omega*v.array()).array();
- } else {
- p = r;
- }
-
- tol2 = tol;
-
- max_it2 = 500000;
- //v = implicitDCInvBPhi2(D, C, ioms, solver, p, tol2, max_it2);
- ivmap(phi, p, idx);
- v = vmap(implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2), idx);
-
- alpha = rho / r_tld.dot(v);
- s = r.array() - alpha*v.array();
- errorn = s.norm()/bnrm2;
-
- if (errorn < tol && iter > 1) {
- phi2.array() += alpha*p.array();
- ivmap( phi, phi2, idx );
- return (0);
- }
-
- tol2 = tol;
-
- max_it1 = 500000;
- //t = implicitDCInvBPhi2(D, C, ioms, solver, s, tol2, max_it1);
- //t = implicitDCInvBPhi3(D, solver, ioms, s, tol2, max_it1);
- ivmap(phi, s, idx);
- t = vmap(implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it1), idx);
- omega = t.dot(s) / t.dot(t);
-
- r = s.array() - omega*t.array();
- errorn = r.norm() / bnrm2;
- iter_done = iter;
-
- if (errorn <= tol) {
- ivmap( phi, phi2, idx );
- return (0);
- }
-
- if (abs(omega) < eps) {
- ivmap( phi, phi2, idx );
- return (0);
- }
-
- rho_1 = rho;
-
- logio << "iteration " << std::setw(3) << iter
- << " errorn " << std::setw(6) << std::setprecision(4) << std::scientific << errorn
- //<< "\timplicit iterations " << std::setw(5) << max_it1+max_it2
- << " time " << std::setw(6) << std::fixed << std::setprecision(2) << timer.end() << std::endl;
-
- // Check to see how progress is going
-
- if (errornold - errorn < 0) {
- logio << "Irregular non-monotonic (negative) convergence. Recommend restart. \n";
- ivmap( phi, phi2, idx );
- return (2);
- }
-
- /*
- if (errornold - errorn < 1e-14) {
- logio << "not making any progress. Giving up\n";
- return (1);
- }
- */
-
- //std::cout << "|| p-s ||" << (alpha*p - omega*s).norm() << std::endl;
-
- // only update phi if good things are happening
- phi2.array() += alpha*p.array() + omega*s.array();
- errornold = errorn;
-
- }
- ivmap( phi, phi2, idx );
- return (0);
- }
-
- // On Input
- // A = Matrix
- // B = Right hand side
- // X = initial guess, and solution
- // maxit = maximum Number of iterations
- // tol = error tolerance
- // On Output
- // X real solution vector
- // errorn = Real error norm
- template < typename Solver >
- int implicitbicgstab_ei(const SparseMat& D,
- const Ref< VectorXcr const > ioms,
- const Ref< VectorXcr const > rhs,
- Ref <VectorXcr> phi,
- Solver& solver,
- int &max_it, const Real &tol, Real &errorn, int &iter_done, ofstream& logio) {
-
- logio << "using the preconditioned Eigen implicit solver" << std::endl;
-
- Complex omega, rho, rho_1, alpha, beta;
- Real tol2;
- int iter, max_it2,max_it1;
-
- // Determine size of system and init vectors
- int n = phi.size();
- VectorXcr r(n);
- VectorXcr r_tld(n);
- VectorXcr p(n);
- VectorXcr v(n);
- VectorXcr s(n);
- VectorXcr t(n);
-
- // Initialise
- iter_done = 0;
- Real eps = 1e-100;
-
- Real bnrm2 = rhs.norm();
- if (bnrm2 == 0) {
- phi.setConstant(0.0);
- errorn = 0;
- std::cerr << "Trivial case of Ax = b, where b is 0\n";
- return (0);
- }
-
- // If there is an initial guess
- if ( phi.norm() ) {
- tol2 = tol;
- max_it2 = 50000;
- r = rhs - implicitDCInvBPhi3(D, solver, ioms, phi, tol2, max_it2);
- } else {
- r = rhs;
- }
-
- jsw_timer timer;
-
- errorn = r.norm() / bnrm2;
- omega = 1.;
- r_tld = r;
- Real errornold = 1e14;
-
- // Get down to business
- for (iter=0; iter<max_it; ++iter) {
-
- timer.begin();
-
- rho = r_tld.dot(r);
- if (abs(rho) < eps) return (0);
-
- if (iter > 0) {
- beta = (rho/rho_1) * (alpha/omega);
- p = r.array() + beta*(p.array()-omega*v.array()).array();
- } else {
- p = r;
- }
-
- tol2 = tol;
- max_it2 = 500000;
- v = implicitDCInvBPhi3(D, solver, ioms, p, tol2, max_it2);
- max_it2 = 0; // solver.iterations();
-
- alpha = rho / r_tld.dot(v);
- s = r.array() - alpha*v.array();
- errorn = s.norm()/bnrm2;
-
- if (errorn < tol && iter > 1) {
- phi.array() += alpha*p.array();
- return (0);
- }
-
- tol2 = tol;
- max_it1 = 500000;
- t = implicitDCInvBPhi3(D, solver, ioms, s, tol2, max_it1);
- max_it1 = 0; //solver.iterations();
- omega = t.dot(s) / t.dot(t);
-
- r = s.array() - omega*t.array();
- errorn = r.norm() / bnrm2;
- iter_done = iter;
-
- if (errorn <= tol ) return (0);
- if (abs(omega) < eps) return (0);
- rho_1 = rho;
-
- logio << "iteration " << std::setw(4) << iter
- << "\terrorn " << std::setw(6) << std::setprecision(4) << std::scientific << errorn
- << "\timplicit iterations " << std::setw(5) << max_it1+max_it2
- << "\ttime " << std::setw(10) << std::fixed << std::setprecision(2) << timer.end() << std::endl;
-
- // Check to see how progress is going
- if (errornold - errorn < 0) {
- logio << "irregular (negative) convergence. Try again? \n";
- return (2);
- }
-
- // only update phi if good things are happening
- phi.array() += alpha*p.array() + omega*s.array();
- errornold = errorn;
-
- }
- return (0);
- }
-
-
- // On Input
- // A = Matrix
- // B = Right hand side
- // X = initial guess, and solution
- // maxit = maximum Number of iterations
- // tol = error tolerance
- // On Output
- // X real solution vector
- // errorn = Real error norm
- int implicitbicgstab(const SparseMat& D,
- const SparseMat& C,
- const VectorXcr& ioms,
- const SparseMat& MC,
- Eigen::Ref< VectorXcr > rhs,
- VectorXcr& phi,
- int &max_it, Real &tol, Real &errorn, int &iter_done) {
-
- Complex omega, rho, rho_1, alpha, beta;
- Real errmin, tol2;
- int iter, max_it2;
-
- // // Cholesky decomp
- // SparseLLT<SparseMatrix<Complex>, Cholmod>
- // CholC(SparseMatrix<Complex> (C.real()) );
- // if(!CholC.succeeded()) {
- // std::cerr << "decomposiiton failed\n";
- // return EXIT_FAILURE;
- // }
-
- // Determine size of system and init vectors
- int n = phi.size();
- VectorXcr r(n);
- VectorXcr r_tld(n);
- VectorXcr p(n);
- VectorXcr v(n);
- //VectorXcr p_hat(n);
- VectorXcr s(n);
- //VectorXcr s_hat(n);
- VectorXcr t(n);
- VectorXcr xmin(n);
-
- // TODO, refigure for implicit large system
- // std::cout << "Start BiCGStab, memory needed: "
- // << (sizeof(Complex)*(9+2)*n/(1024.*1024*1024)) << " [Gb]\n";
-
- // Initialise
- iter_done = 0;
- v.setConstant(0.); // not necessary I don't think
- t.setConstant(0.);
- Real eps = 1e-100;
-
- Real bnrm2 = rhs.norm();
- if (bnrm2 == 0) {
- phi.setConstant(0.0);
- errorn = 0;
- std::cerr << "Trivial case of Ax = b, where b is 0\n";
- return (0);
- }
-
- // If there is an initial guess
- if ( phi.norm() ) {
- //r = rhs - A*phi;
- tol2 = tol;
- max_it2 = 50000;
- std::cout << "Initial guess " << std::endl;
- r = rhs - implicitDCInvBPhi(D, C, ioms, MC, phi, tol2, max_it2);
- //r = rhs - implicitDCInvBPhi (D, C, B, CholC, phi, tol2, max_it2);
- } else {
- r = rhs;
- }
-
-
- errorn = r.norm() / bnrm2;
- //std::cout << "Initial |r| " << r.norm() << "\t" << errorn<< std::endl;
- omega = 1.;
- r_tld = r;
- errmin = 1e30;
- Real errornold = 1e6;
- // Get down to business
- for (iter=0; iter<max_it; ++iter) {
-
- rho = r_tld.dot(r);
- if (abs(rho) < eps) return (0);
-
- if (iter > 0) {
- beta = (rho/rho_1) * (alpha/omega);
- p = r.array() + beta*(p.array()-omega*v.array()).array();
- } else {
- p = r;
- }
-
- // Use pseudo inverse to get approximate answer
- //p_hat = p;
- tol2 = std::max(1e-4*errorn, tol);
- tol2 = tol;
- max_it2 = 500000;
- //v = A*p_hat;
- v = implicitDCInvBPhi(D, C, ioms, MC, p, tol2, max_it2);
- //v = implicitDCInvBPhi(D, C, B, CholC, p, tol2, max_it2);
-
- alpha = rho / r_tld.dot(v);
- s = r.array() - alpha*v.array();
- errorn = s.norm()/bnrm2;
-
- if (errorn < tol && iter > 1) {
- phi.array() += alpha*p.array();
- return (0);
- }
-
- // s_hat = M*s;
- //tol2 = tol;
- tol2 = std::max(1e-4*errorn, tol);
- tol2 = tol;
- max_it2 = 50000;
- // t = A*s_hat;
- t = implicitDCInvBPhi(D, C, ioms, MC, s, tol2, max_it2);
- //t = implicitDCInvBPhi(D, C, B, CholC, s, tol2, max_it2);
- omega = t.dot(s) / t.dot(t);
- phi.array() += alpha*p.array() + omega*s.array();
- r = s.array() - omega*t.array();
- errorn = r.norm() / bnrm2;
- iter_done = iter;
- if (errorn < errmin) {
- // remember the model with the smallest norm
- errmin = errorn;
- xmin = phi;
- }
-
- if (errorn <= tol ) return (0);
- if (abs(omega) < eps) return (0);
- rho_1 = rho;
-
- std::cout << "iteration " << std::setw(4) << iter << "\terrorn " << std::setw(6) << std::scientific << errorn
- << "\timplicit iterations " << std::setw(5) << max_it2 << std::endl;
- if (errornold - errorn < 1e-14) {
- std::cout << "not making any progress. Giving up\n";
- return (2);
- }
- errornold = errorn;
-
- }
- return (0);
- }
-
-
- //int bicgstab(const SparseMat &A, Eigen::SparseLU< Eigen::SparseMatrix<Complex, RowMajor> ,
-
|