Surface NMR processing and inversion GUI
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

harmonic.py 5.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. import numpy as np
  2. from scipy.optimize import least_squares
  3. from scipy.optimize import minimize
  4. from scipy.linalg import lstsq as sclstsq
  5. import scipy.linalg as lin
  6. def harmonicEuler ( f0, sN, fs, nK, t ):
  7. """
  8. Performs inverse calculation of harmonics contaminating a signal.
  9. Args:
  10. f0 = base frequency of the sinusoidal noise
  11. sN = signal containing noise
  12. fs = sampling frequency
  13. nK = number of harmonics to calculate
  14. t = time samples
  15. """
  16. A = np.exp(1j* np.tile( np.arange(1,nK+1),(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(len(t)),(nK,1)).T )
  17. v = np.linalg.lstsq(A, sN, rcond=None)
  18. alpha = np.real(v[0])
  19. beta = np.imag(v[0])
  20. amp = np.abs(v[0])
  21. phase = np.angle(v[0])
  22. h = np.zeros(len(t))
  23. for ik in range(nK):
  24. h += 2*amp[ik] * np.cos( 2.*np.pi*(ik+1) * (f0/fs) * np.arange(0, len(t), 1 ) + phase[ik] )
  25. return sN-h
  26. res = sN-h # residual
  27. # calculate jacobian
  28. #J = jacEuler(f0, sN, fs, nK, t)
  29. #plt.matshow(np.real(J), aspect='auto')
  30. #Jv = J * np.tile(v[0], (len(t) ,1))
  31. #plt.matshow(np.real(Jv), aspect='auto')
  32. #print ("shape J", np.shape(J))
  33. #print ("shape v", np.shape(v[0]))
  34. #print ("shape Jv", np.shape(Jv))
  35. #plt.figure()
  36. #plt.plot(v[0])
  37. #plt.figure()
  38. #plt.plot(Jv)
  39. #plt.show()
  40. #exit()
  41. #jac = np.linalg.norm( np.dot(Jv.T, res))
  42. #print("norm ||", jac , "||", " at freq", f0)
  43. #return res, jac
  44. def jacEuler( f0, sN, fs, nK, t):
  45. print("building Jacobian matrix ")
  46. J = np.zeros( (len(t), nK), dtype=np.complex64 )
  47. for it, tt in enumerate(t):
  48. for ik, k in enumerate( np.arange(0, nK) ):
  49. c = 1j*2.*np.pi*(ik+1.)
  50. J[it, ik] = (c*np.exp(it*c*f0/fs)) / fs
  51. return J
  52. def harmonicEuler2 ( f0, f1, sN, fs, nK, t ):
  53. """
  54. Performs inverse calculation of harmonics contaminating a signal.
  55. Args:
  56. f0 = base frequency of the sinusoidal noise
  57. sN = signal containing noise
  58. fs = sampling frequency
  59. nK = number of harmonics to calculate
  60. t = time samples
  61. """
  62. A1 = np.exp(1j* np.tile( np.arange(1,nK+1),(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(len(t)),(nK,1)).T )
  63. A2 = np.exp(1j* np.tile( np.arange(1,nK+1),(len(t), 1)) * 2*np.pi* (f1/fs) * np.tile(np.arange(len(t)),(nK,1)).T )
  64. A = np.concatenate( (A1, A2), axis=1 )
  65. v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8)
  66. amp = np.abs(v[0][0:nK])
  67. phase = np.angle(v[0][0:nK])
  68. amp1 = np.abs(v[0][nK:2*nK])
  69. phase1 = np.angle(v[0][nK:2*nK])
  70. h = np.zeros(len(t))
  71. for ik in range(nK):
  72. h += 2*amp[ik] * np.cos( 2.*np.pi*(ik+1) * (f0/fs) * np.arange(0, len(t), 1 ) + phase[ik] ) + \
  73. 2*amp1[ik] * np.cos( 2.*np.pi*(ik+1) * (f1/fs) * np.arange(0, len(t), 1 ) + phase1[ik] )
  74. return sN-h
  75. def harmonicNorm ( f0, sN, fs, nK, t ):
  76. return np.linalg.norm( harmonicEuler(f0, sN, fs, nK, t) )
  77. def harmonic2Norm ( f0, sN, fs, nK, t ):
  78. return np.linalg.norm(harmonicEuler2(f0[0], f0[1], sN, fs, nK, t))
  79. def minHarmonic(f0, sN, fs, nK, t):
  80. f02 = guessf0(sN, fs)
  81. print("minHarmonic", f0, fs, nK, " guess=", f02)
  82. # CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr
  83. res = minimize(harmonicNorm, np.array((f0)), args=(sN, fs, nK, t), jac='2-point', method='BFGS') #, jac=jacEuler) #, hess=None, bounds=None )
  84. print(res)
  85. return harmonicEuler(res.x[0], sN, fs, nK, t)#[0]
  86. def minHarmonic2(f1, f2, sN, fs, nK, t):
  87. #f02 = guessf0(sN, fs)
  88. #print("minHarmonic2", f0, fs, nK, " guess=", f02)
  89. #methods with bounds, L-BFGS-B, TNC, SLSQP
  90. res = minimize( harmonic2Norm, np.array((f1,f2)), args=(sN, fs, nK, t), jac='2-point', method='BFGS') #, bounds=((f1-1.,f1+1.0),(f2-1.0,f2+1.0)), method='TNC' )
  91. print(res)
  92. return harmonicEuler2(res.x[0], res.x[1], sN, fs, nK, t)
  93. def guessf0( sN, fs ):
  94. S = np.fft.fft(sN)
  95. w = np.fft.fftfreq( len(sN), 1/fs )
  96. imax = np.argmax( np.abs(S) )
  97. #plt.plot( w, np.abs(S) )
  98. #plt.show()
  99. #print(w)
  100. #print ( w[imax], w[imax+1] )
  101. return abs(w[imax])
  102. if __name__ == "__main__":
  103. import matplotlib.pyplot as plt
  104. f0 = 60 # Hz
  105. f1 = 60 # Hz
  106. delta = np.random.rand() - .5
  107. delta2 = np.random.rand() - .5
  108. print("delta", delta)
  109. print("delta2", delta2)
  110. fs = 10000 # GMR
  111. t = np.arange(0, 1, 1/fs)
  112. phi = 2.*np.pi*np.random.rand() - np.pi
  113. phi2 = 2.*np.pi*np.random.rand() - np.pi
  114. print("phi", phi, phi2)
  115. A = 1.0
  116. A2 = 1.0
  117. A3 = 1.0
  118. nK = 10
  119. T2 = .200
  120. sN = A *np.sin( ( 1*(delta +f0))*2*np.pi*t + phi ) + \
  121. A2*np.sin( ( 1*(delta2 +f1))*2*np.pi*t + phi2 ) + \
  122. np.random.normal(0,.1,len(t)) + \
  123. + A3*np.exp( -t/T2 )
  124. sNc = A *np.sin( (1*(delta +f0))*2*np.pi*t + phi ) + \
  125. A2*np.sin( (1*(delta2+f1))*2*np.pi*t + phi2 ) + \
  126. + A3*np.exp( -t/T2 )
  127. guessf0(sN, fs)
  128. # single freq
  129. #h = harmonicEuler( f0, sN, fs, nK, t)
  130. #h = minHarmonic( f0, sN, fs, nK, t)
  131. # two freqs
  132. h = minHarmonic2( f0+1e-2, f1-1e-2, sN, fs, nK, t)
  133. #h = harmonicEuler2( f0, f1, sN, fs, nK, t)
  134. plt.figure()
  135. plt.plot(t, sN, label="sN")
  136. #plt.plot(t, sN-h, label="sN-h")
  137. plt.plot(t, h, label='h')
  138. plt.title("harmonic")
  139. plt.legend()
  140. plt.figure()
  141. plt.plot(t, sN-sNc, label='true noise')
  142. plt.plot(t, h, label='harmonic removal')
  143. plt.plot(t, np.exp(-t/T2), label="nmr")
  144. plt.legend()
  145. plt.title("true noise")
  146. plt.show()