Surface NMR processing and inversion GUI
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549
  1. from PyQt5.QtCore import *
  2. import numpy as np
  3. import scipy.signal as signal
  4. import pylab
  5. import sys
  6. import scipy
  7. import copy
  8. import struct
  9. from scipy.io.matlab import mio
  10. from numpy import pi
  11. from math import floor
  12. import matplotlib as mpl
  13. from matplotlib.ticker import FuncFormatter
  14. import matplotlib.font_manager as fm
  15. import matplotlib.pyplot as plt
  16. import matplotlib.ticker
  17. from matplotlib.ticker import MaxNLocator
  18. import multiprocessing
  19. import itertools
  20. import akvo.tressel.adapt as adapt
  21. #import akvo.tressel.cadapt as adapt # cython for more faster
  22. import akvo.tressel.decay as decay
  23. import akvo.tressel.pca as pca
  24. import akvo.tressel.rotate as rotate
  25. import akvo.tressel.cmaps as cmaps
  26. import akvo.tressel.harmonic as harmonic
  27. import cmocean # colormaps for geophysical data
  28. plt.register_cmap(name='viridis', cmap=cmaps.viridis)
  29. plt.register_cmap(name='inferno', cmap=cmaps.inferno)
  30. plt.register_cmap(name='inferno_r', cmap=cmaps.inferno_r)
  31. plt.register_cmap(name='magma', cmap=cmaps.magma)
  32. plt.register_cmap(name='magma_r', cmap=cmaps.magma_r)
  33. def loadGMRBinaryFID( rawfname, istack, info ):
  34. """ Reads a single binary GMR file and fills into DATADICT
  35. """
  36. #################################################################################
  37. # figure out key data indices
  38. # Pulse
  39. nps = (int)((info["prePulseDelay"])*info["samp"])
  40. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  41. # Data
  42. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  43. nd1 = (int)(1.*self.samp) # samples in first pulse
  44. invGain = 1./self.RxGain
  45. invCGain = self.CurrentGain
  46. pulse = "Pulse 1"
  47. chan = self.DATADICT[pulse]["chan"]
  48. rchan = self.DATADICT[pulse]["rchan"]
  49. rawFile = open( rawfname, 'rb')
  50. T = N_samp * self.dt
  51. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  52. for ipm in range(self.nPulseMoments):
  53. buf1 = rawFile.read(4)
  54. buf2 = rawFile.read(4)
  55. N_chan = struct.unpack('>i', buf1 )[0]
  56. N_samp = struct.unpack('>i', buf2 )[0]
  57. DATA = np.zeros([N_samp, N_chan+1])
  58. for ichan in range(N_chan):
  59. DATADUMP = rawFile.read(4*N_samp)
  60. for irec in range(N_samp):
  61. DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0]
  62. return DATA, TIMES
  63. class SNMRDataProcessor(QObject):
  64. """ Revised class for preprocessing sNMR Data.
  65. Derived types can read GMR files
  66. """
  67. def __init__(self):
  68. QObject.__init__(self)
  69. self.numberOfMoments = 0
  70. self.numberOfPulsesPerMoment = 0
  71. self.pulseType = "NONE"
  72. self.transFreq = 0
  73. self.pulseLength = np.zeros(1)
  74. self.nPulseMoments = 0
  75. self.dt = 0
  76. def mfreqz(self, b,a=1):
  77. """ Plots the frequency response of a filter specified with a and b weights
  78. """
  79. import scipy.signal as signal
  80. pylab.figure(124)
  81. w,h = signal.freqz(b,a)
  82. w /= max(w)
  83. w *= .5/self.dt
  84. h_dB = 20 * pylab.log10 (abs(h))
  85. pylab.subplot(211)
  86. #pylab.plot(w/max(w),h_dB)
  87. pylab.plot(w,h_dB)
  88. pylab.ylim(-150, 5)
  89. pylab.ylabel('Magnitude (dB)')
  90. #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
  91. pylab.xlabel(r'Hz')
  92. pylab.title(r'Frequency response')
  93. pylab.subplot(212)
  94. h_Phase = pylab.unwrap(pylab.arctan2(pylab.imag(h), pylab.real(h)))
  95. #pylab.plot(w/max(w),h_Phase)
  96. pylab.plot(w,h_Phase)
  97. pylab.ylabel('Phase (radians)')
  98. pylab.xlabel(r'Hz')
  99. #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
  100. pylab.title(r'Phase response')
  101. pylab.subplots_adjust(hspace=0.5)
  102. def mfreqz2(self, b, a, canvas):
  103. "for analysing filt-filt"
  104. import scipy.signal as signal
  105. canvas.reAx2(False,False)
  106. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  107. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  108. #canvas.ax2.tick_params(axis='both', which='minor', labelsize=6)
  109. #pylab.figure(124)
  110. w,h = signal.freqz(b,a)
  111. w /= max(w)
  112. w *= .5/self.dt
  113. h_dB = 20 * pylab.log10(abs(h*h) + 1e-16)
  114. #ab.subplot(211)
  115. #pylab.plot(w/max(w),h_dB)
  116. canvas.ax1.plot(w,h_dB)
  117. canvas.ax1.set_ylim(-150, 5)
  118. canvas.ax1.set_ylabel('Magnitude [db]', fontsize=8)
  119. #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
  120. canvas.ax1.set_xlabel(r'[Hz]', fontsize=8)
  121. canvas.ax1.set_title(r'Frequency response', fontsize=8)
  122. canvas.ax1.grid(True)
  123. tt = np.arange(0, .02, self.dt)
  124. impulse = signal.dimpulse((self.filt_z, self.filt_p, self.filt_k, self.dt), t=tt)
  125. #impulse = signal.dstep((self.filt_z, self.filt_p, self.filt_k, self.dt), t=tt)
  126. #print impulse
  127. #for ii in range(len(impulse[1])):
  128. impulse_dB = 20.*np.log10(np.abs(np.array(impulse[1][0])))
  129. #canvas.ax2.plot(np.array(impulse[0]), impulse_dB)
  130. canvas.ax2.plot(np.array(impulse[0]), impulse[1][0])
  131. #h_Phase = pylab.unwrap(pylab.arctan2(pylab.imag(h), pylab.real(h)))
  132. #canvas.ax2.plot(w,h_Phase)
  133. canvas.ax2.set_ylabel('response [%]', fontsize=8)
  134. canvas.ax2.set_xlabel(r'time [s]', fontsize=8)
  135. canvas.ax2.set_title(r'impulse response', fontsize=8)
  136. #canvas.ax2.grid(True)
  137. canvas.draw()
  138. # search for last
  139. return impulse #[np.where(impulse[1][0] > .01)[-1]]
  140. class GMRDataProcessor(SNMRDataProcessor):
  141. # slots
  142. progressTrigger = pyqtSignal("int")
  143. doneTrigger = pyqtSignal()
  144. enableDSPTrigger = pyqtSignal()
  145. updateProcTrigger = pyqtSignal()
  146. def __init__(self):
  147. SNMRDataProcessor.__init__(self)
  148. self.maxBusV = 0.
  149. self.samp = 50000. # sampling frequency
  150. self.dt = 2e-5 # sampling rate
  151. self.deadTime = .0055 # instrument dead time before measurement
  152. self.prePulseDelay = 0.05 # delay before pulse
  153. self.windead = 0. # FD window filter dead time
  154. self.pulseType = -1
  155. self.transFreq = -1
  156. self.maxBusV = -1
  157. self.pulseLength = -1
  158. self.interpulseDelay = -1 # for T2, Spin Echo
  159. self.repetitionDelay = -1 # delay between first pulse
  160. self.nPulseMoments = -1 # Number of pulse moments per stack
  161. self.TuneCapacitance = -1 # tuning capac in uF
  162. self.nTransVersion = -1 # Transmitter version
  163. self.nDAQVersion = -1 # DAQ software version
  164. self.nInterleaves = -1 # num interleaves
  165. # self.nReceiveChannels = 4 # Num receive channels
  166. self.RotatedAmplitude = False
  167. # self.DATA = np.zeros(1) # Numpy array to hold all data, dimensions resized based on experiment
  168. # self.PULSES = np.zeros(1) # Numpy array to hold all data, dimensions resized based on experiment
  169. def Print(self):
  170. print ("pulse type", self.pulseType)
  171. print ("maxBusV", self.maxBusV)
  172. print ("inner pulse delay", self.interpulseDelay)
  173. print ("tuning capacitance", self.TuneCapacitance)
  174. print ("sampling rate", self.samp)
  175. print ("dt", self.dt)
  176. print ("dead time", self.deadTime)
  177. print ("pre pulse delay", self.prePulseDelay)
  178. print ("number of pulse moments", self.nPulseMoments)
  179. print ("pulse Length", self.pulseLength)
  180. print ("trans freq", self.transFreq)
  181. def readHeaderFile(self, FileName):
  182. HEADER = np.loadtxt(FileName)
  183. pulseTypeDict = {
  184. 1 : lambda: "FID",
  185. 2 : lambda: "T1",
  186. 3 : lambda: "SPINECHO",
  187. 4 : lambda: "4PhaseT1"
  188. }
  189. pulseLengthDict = {
  190. 1 : lambda x: np.ones(1) * x,
  191. 2 : lambda x: np.ones(2) * x,
  192. 3 : lambda x: np.array([x, 2.*x]),
  193. 4 : lambda x: np.ones(2) * x
  194. }
  195. self.pulseType = pulseTypeDict.get((int)(HEADER[0]))()
  196. self.transFreq = HEADER[1]
  197. self.maxBusV = HEADER[2]
  198. self.pulseLength = pulseLengthDict.get((int)(HEADER[0]))(1e-3*HEADER[3])
  199. self.interpulseDelay = 1e-3*HEADER[4] # for T2, Spin Echo
  200. self.repetitionDelay = HEADER[5] # delay between first pulse
  201. self.nPulseMoments = (int)(HEADER[6]) # Number of pulse moments per stack
  202. self.TuneCapacitance = HEADER[7] # tuning capacitance in uF
  203. self.nTransVersion = HEADER[8] # Transmitter version
  204. self.nDAQVersion = HEADER[9] # DAQ software version
  205. self.nInterleaves = HEADER[10] # num interleaves
  206. self.gain()
  207. # default
  208. self.samp = 50000. # sampling frequency
  209. self.dt = 2e-5 # sampling rate
  210. # newer header files contain 64 entries
  211. if self.nDAQVersion >= 2:
  212. #self.deadtime = HEADER[11]
  213. #self.unknown = HEADER[12]
  214. #self.PreAmpGain = HEADER[13]
  215. self.samp = HEADER[14] # sampling frequency
  216. self.dt = 1./self.samp # sampling rate
  217. self.deadTime = .0055 # instrument dead time before measurement
  218. self.prePulseDelay = 0.05 # delay before pulse
  219. #exit()
  220. def gain(self):
  221. #######################################################
  222. # Circuit gain
  223. # From MRSMatlab
  224. w = 2*np.pi*self.transFreq
  225. # 1e6 due to uF of reported capacitance
  226. L_coil = 1e6/(self.TuneCapacitance*(w**2))
  227. R_coil = 1.
  228. Z1_in = .5 + 1j*.5*w
  229. Z2_in = 1./(1j*w*.000001616)
  230. Z_eq_inv = (1./Z1_in) + (1./Z2_in)
  231. Zeq = 1./Z_eq_inv
  232. Zsource = R_coil + 1j*w*L_coil
  233. voltage_in = Zeq / (Zsource + Zeq)
  234. self.circuitGain = np.abs(voltage_in)
  235. self.circuitPhase_deg = (180/np.pi)+np.angle(voltage_in)
  236. circuitImpedance_ohms = np.abs(Zsource + Zeq)
  237. ######################################################
  238. # PreAmp gain
  239. if self.nTransVersion == 4:
  240. self.PreAmpGain = 1000.
  241. elif self.nTransVersion == 1 or self.nTransVersion == 2 or self.nTransVersion == 3 or self.nTransVersion == 6:
  242. self.PreAmpGain = 500.
  243. else:
  244. print ("unsupported transmitter version")
  245. exit(1)
  246. # Total Receiver Gain
  247. self.RxGain = self.circuitGain * self.PreAmpGain
  248. #####################################################
  249. # Current gain
  250. if floor(self.nDAQVersion) == 1:
  251. self.CurrentGain = 150.
  252. elif floor(self.nDAQVersion) == 2:
  253. self.CurrentGain = 180.
  254. def updateProgress(self):
  255. pass
  256. def TDSmartStack(self, outlierTest, MADcutoff, canvas):
  257. Stack = {}
  258. # align for stacking and modulate
  259. for pulse in self.DATADICT["PULSES"]:
  260. stack = np.zeros(( len(self.DATADICT[pulse]["chan"]), self.DATADICT["nPulseMoments"],\
  261. len(self.DATADICT["stacks"]), len(self.DATADICT[pulse]["TIMES"]) ))
  262. for ipm in range(self.DATADICT["nPulseMoments"]):
  263. istack = 0
  264. for sstack in self.DATADICT["stacks"]:
  265. if self.pulseType == "FID" or pulse == "Pulse 2":
  266. mod = (-1)**(ipm%2) * (-1)**(sstack%2)
  267. elif self.pulseType == "4PhaseT1":
  268. mod = (-1)**(ipm%2) * (-1)**(((sstack-1)/2)%2)
  269. ichan = 0
  270. for chan in self.DATADICT[pulse]["chan"]:
  271. stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan][ipm][sstack]
  272. ichan += 1
  273. istack += 1
  274. Stack[pulse] = stack
  275. #########################################
  276. # simple stack and plot of simple stack #
  277. #########################################
  278. canvas.reAxH2(np.shape(stack)[0], False, False)
  279. axes = canvas.fig.axes
  280. SimpleStack = {}
  281. VarStack = {}
  282. for pulse in self.DATADICT["PULSES"]:
  283. SimpleStack[pulse] = {}
  284. VarStack[pulse] = {}
  285. ichan = 0
  286. for chan in self.DATADICT[pulse]["chan"]:
  287. SimpleStack[pulse][chan] = 1e9*np.average( Stack[pulse][ichan], 1 )
  288. VarStack[pulse][chan] = 1e9*np.std( Stack[pulse][ichan], 1 )
  289. ax1 = axes[ 2*ichan ]
  290. #ax1.get_yaxis().get_major_formatter().set_useOffset(False)
  291. y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  292. ax1.yaxis.set_major_formatter(y_formatter)
  293. ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 )) #, color='darkblue' )
  294. ax1.set_title("Ch." + str(chan) + ": avg FID", fontsize=8)
  295. ax1.set_xlabel(r"time (ms)", fontsize=8)
  296. if ichan == 0:
  297. ax1.set_ylabel(r"signal [nV]", fontsize=8)
  298. else:
  299. plt.setp(ax1.get_yticklabels(), visible=False)
  300. plt.setp(ax1.get_yaxis().get_offset_text(), visible=False)
  301. # if ichan == 1:
  302. # canvas.ax2.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' )
  303. # canvas.ax2.set_title("Ch." + str(chan) + ": total average FID", fontsize=8)
  304. # canvas.ax2.set_xlabel(r"time [ms]", fontsize=8)
  305. # if ichan == 2:
  306. # canvas.ax3.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' )
  307. # canvas.ax3.set_title("Ch." + str(chan) + ": total average FID", fontsize=8)
  308. # canvas.ax3.set_xlabel(r"time [ms]", fontsize=8)
  309. # if ichan == 3:
  310. # canvas.ax4.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' )
  311. # canvas.ax4.set_title("Ch." + str(chan) + ": total average FID", fontsize=8)
  312. # canvas.ax4.set_xlabel(r"time [ms]", fontsize=8)
  313. ichan += 1
  314. #########################
  315. # Oulier rejectig stack #
  316. #########################
  317. if outlierTest == "MAD":
  318. MADStack = {}
  319. VarStack = {}
  320. #1.4826 is assumption of gaussian noise
  321. madstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  322. self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"]) ))
  323. varstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  324. self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"]) ))
  325. for pulse in self.DATADICT["PULSES"]:
  326. MADStack[pulse] = {}
  327. VarStack[pulse] = {}
  328. ichan = 0
  329. for chan in self.DATADICT[pulse]["chan"]:
  330. ax1 = axes[ 2*ichan ]
  331. for ipm in range(self.DATADICT["nPulseMoments"]):
  332. # # brutal loop over time, can this be vectorized?
  333. # for it in range(len(self.DATADICT[pulse]["TIMES"])):
  334. # x = 1e9 *Stack[pulse][ichan,ipm,:,it]
  335. # MAD = 1.4826 * np.median( np.abs(x-np.median(x)) )
  336. # good = 0
  337. # for istack in self.DATADICT["stacks"]:
  338. # if (np.abs(x[istack-1]-np.median(x))) / MAD < 2:
  339. # good += 1
  340. # madstack[ ichan, ipm, it ] += x[istack-1]
  341. # else:
  342. # pass
  343. # madstack[ichan, ipm, it] /= good
  344. # percent = int(1e2* (float)(ipm) / (float)(self.DATADICT["nPulseMoments"]) )
  345. # self.progressTrigger.emit(percent)
  346. # Vectorized version of above...much, much faster
  347. x = 1e9*copy.deepcopy(Stack[pulse][ichan][ipm,:,:]) # stack and time indices
  348. tile_med = np.tile( np.median(x, axis=0), (np.shape(x)[0],1))
  349. MAD = MADcutoff * np.median(np.abs(x - tile_med), axis=0)
  350. tile_MAD = np.tile( MAD, (np.shape(x)[0],1))
  351. good = np.abs(x-tile_med)/tile_MAD < 2. # 1.4826 # 2
  352. madstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).mean(axis=0) )
  353. varstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).std(axis=0) )
  354. # reporting
  355. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  356. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  357. self.progressTrigger.emit(percent)
  358. ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( madstack[ichan], 0 ))# , color='darkred')
  359. MADStack[pulse][chan] = madstack[ichan]
  360. VarStack[pulse][chan] = varstack[ichan]
  361. ichan += 1
  362. self.DATADICT["stack"] = MADStack
  363. else:
  364. self.DATADICT["stack"] = SimpleStack
  365. #########################################
  366. # Plot Fourier Transform representation #
  367. #########################################
  368. # canvas.fig.subplots_adjust(right=0.8)
  369. # cbar_ax = canvas.fig.add_axes([0.85, 0.1, 0.015, 0.355])
  370. # cbar_ax.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  371. im2 = []
  372. im1 = []
  373. for pulse in self.DATADICT["PULSES"]:
  374. ichan = 0
  375. axes = canvas.fig.axes
  376. vvmin = 1e10
  377. vvmax = 0
  378. for chan in self.DATADICT[pulse]["chan"]:
  379. ax1 = axes[2*ichan ]
  380. ax2 = axes[2*ichan+1] # TODO fix hard coded number
  381. if outlierTest == "MAD":
  382. X = np.fft.rfft( MADStack[pulse][chan][0,:] )
  383. nu = np.fft.fftfreq(len( MADStack[pulse][chan][0,:]), d=self.dt)
  384. else:
  385. X = np.fft.rfft( SimpleStack[pulse][chan][0,:] )
  386. nu = np.fft.fftfreq(len( SimpleStack[pulse][chan][0,:]), d=self.dt)
  387. nu = nu[0:len(X)]
  388. nu[-1] = np.abs(nu[-1])
  389. df = nu[1] - nu[0]
  390. of = 0
  391. istart = int((self.transFreq-50.)/df)
  392. iend = int((self.transFreq+50.)/df)
  393. of = nu[istart]
  394. def freqlabel(xxx, pos):
  395. return '%1.0f' %(of + xxx*df)
  396. formatter = FuncFormatter(freqlabel)
  397. SFFT = np.zeros( (self.DATADICT["nPulseMoments"], len(X)), dtype=np.complex64 )
  398. SFFT[0,:] = X
  399. for ipm in range(1, self.DATADICT["nPulseMoments"]):
  400. if outlierTest == "MAD":
  401. SFFT[ipm,:] = np.fft.rfft( MADStack[pulse][chan][ipm,:] )
  402. else:
  403. SFFT[ipm,:] = np.fft.rfft( SimpleStack[pulse][chan][ipm,:] )
  404. # convert to dB and add colorbars
  405. #db = 20.*np.log10(np.abs(SFFT[:,istart:iend]))
  406. db = (np.abs(SFFT[:,istart:iend]))
  407. #db = (np.real(SFFT[:,istart:iend]))
  408. #dbr = (np.real(SFFT[:,istart:iend]))
  409. #db = (np.imag(SFFT[:,istart:iend]))
  410. vvmin = min(vvmin, np.min (db))
  411. vvmax = max(vvmax, np.max (db))
  412. im2.append(ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax))
  413. #im1.append(ax1.matshow( dbr, aspect='auto')) #, vmin=vvmin, vmax=vvmax))
  414. #im2.append(ax2.matshow( db, aspect='auto', vmin=vvmin, vmax=vvmax))
  415. #im2 = ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax)
  416. if ichan == 0:
  417. ax2.set_ylabel(r"$q$ (A $\cdot$ s)", fontsize=8)
  418. else:
  419. #ax2.yaxis.set_ticklabels([])
  420. plt.setp(ax2.get_yticklabels(), visible=False)
  421. ax2.xaxis.set_major_formatter(formatter)
  422. ax2.xaxis.set_ticks_position('bottom')
  423. ax2.xaxis.set_major_locator(MaxNLocator(3))
  424. y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  425. ax2.yaxis.set_major_formatter(y_formatter)
  426. #if chan == self.DATADICT[pulse]["chan"][-1]:
  427. #cb2 = canvas.fig.colorbar(im2, cax=cbar_ax, format='%1.0e')
  428. #cb2 = canvas.fig.colorbar(im2[0], ax=ax2, format='%1.0e', orientation='horizontal')
  429. #cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e', orientation='horizontal')
  430. #cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  431. #cb2.set_label("signal (dB)", fontsize=8)
  432. ichan += 1
  433. canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  434. #cb1 = canvas.fig.colorbar(im, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  435. #cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  436. #cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  437. cb2 = canvas.fig.colorbar(im2[-1], ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  438. cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  439. cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  440. #canvas.fig.tight_layout()
  441. canvas.draw()
  442. self.doneTrigger.emit()
  443. #def harmonicModel(self, nF, nK, f0, f1, plot, canvas):
  444. def harmonicModel(self, nF, \
  445. f0, f0K1, f0KN, f0Ks, \
  446. f1, f1K1, f1KN, K1Ks, \
  447. plot, canvas):
  448. """ nF = number of base frequencies, must be 1 or 2
  449. f0 = first base frequency
  450. f0K1 = first harmonic to model for first base frequency
  451. f0KN = last harmonic to model for the first base frequency
  452. f0Ks = subharmonic spacing, set to 1 for no subharmonics.
  453. f1 = second base frequency
  454. f1K1 = first harmonic to model for second base frequency
  455. f1KN = last harmonic to model for the second base frequency
  456. f1Ks = subharmonic spacing for the second base frequency, set to 1 for no subharmonics.
  457. plot = should Akvo plot the results
  458. canvas = mpl plotting axis
  459. """
  460. #print("harmonic modelling...", f0)
  461. #plot = True
  462. if plot:
  463. canvas.reAx2()
  464. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  465. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  466. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  467. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  468. # Data
  469. iFID = 0
  470. for pulse in self.DATADICT["PULSES"]:
  471. self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"]
  472. for ipm in range(self.DATADICT["nPulseMoments"]):
  473. for istack in self.DATADICT["stacks"]:
  474. canvas.ax1.clear()
  475. canvas.ax2.clear()
  476. #for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  477. for ichan in self.DATADICT[pulse]["rchan"]:
  478. if plot:
  479. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  480. label = "orig " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan))
  481. if nF == 1:
  482. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( f0, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  483. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack], self.samp, self.DATADICT[pulse]["TIMES"], \
  484. f0, f0K1, f0KN, f0Ks )
  485. elif nF == 2:
  486. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic2( f0-1e-2, f1+1e-2, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  487. # plot
  488. if plot:
  489. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  490. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan))
  491. for ichan in self.DATADICT[pulse]["chan"]:
  492. if plot:
  493. canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  494. label = "orig " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan))
  495. if nF == 1:
  496. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( f0, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  497. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack], self.samp, self.DATADICT[pulse]["TIMES"], \
  498. f0, f0K1, f0KN, f0Ks )
  499. elif nF == 2:
  500. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic2( f0-1e-2, f1+1e-2, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  501. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.harmonicEuler( f0, self.DATADICT[pulse][ichan][ipm][istack], self.samp, 20, self.DATADICT[pulse]["TIMES"] )
  502. # plot
  503. if plot:
  504. canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  505. label = "data " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan))
  506. if plot:
  507. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  508. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  509. canvas.ax2.set_xlabel(r"time [s]", fontsize=8)
  510. canvas.ax2.set_ylabel(r"signal [nV]", fontsize=8)
  511. canvas.ax1.legend(prop={'size':6})
  512. canvas.ax2.legend(prop={'size':6})
  513. canvas.draw()
  514. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  515. self.progressTrigger.emit(percent)
  516. iFID += 1
  517. self.doneTrigger.emit()
  518. self.updateProcTrigger.emit()
  519. self.doneTrigger.emit()
  520. def FDSmartStack(self, outlierTest, MADcutoff, canvas):
  521. print("FFT stuff")
  522. self.dataCubeFFT()
  523. Stack = {}
  524. # align phase cycling for stacking and modulate
  525. for pulse in self.DATADICT["PULSES"]:
  526. stack = np.zeros(( len(self.DATADICT[pulse]["chan"]), \
  527. self.DATADICT["nPulseMoments"],\
  528. len(self.DATADICT["stacks"]),\
  529. len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1),\
  530. dtype=np.complex )
  531. for ipm in range(self.DATADICT["nPulseMoments"]):
  532. istack = 0
  533. for sstack in self.DATADICT["stacks"]:
  534. if self.pulseType == "FID" or pulse == "Pulse 2":
  535. mod = (-1)**(ipm%2) * (-1)**(sstack%2)
  536. elif self.pulseType == "4PhaseT1":
  537. mod = (-1)**(ipm%2) * (-1)**(((sstack-1)/2)%2)
  538. ichan = 0
  539. for chan in self.DATADICT[pulse]["chan"]:
  540. #stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan][ipm][sstack]
  541. stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan]["FFT"][sstack][ipm,:]
  542. ichan += 1
  543. istack += 1
  544. Stack[pulse] = stack
  545. #########################################
  546. # simple stack and plot of simple stack #
  547. ########################################https://faculty.apps.utah.edu/#
  548. canvas.reAxH2(np.shape(stack)[0], False, False)
  549. axes = canvas.fig.axes
  550. SimpleStack = {}
  551. VarStack = {}
  552. for pulse in self.DATADICT["PULSES"]:
  553. SimpleStack[pulse] = {}
  554. VarStack[pulse] = {}
  555. ichan = 0
  556. for chan in self.DATADICT[pulse]["chan"]:
  557. SimpleStack[pulse][chan] = 1e9*np.average( Stack[pulse][ichan], 1 )
  558. VarStack[pulse][chan] = 1e9*np.std( Stack[pulse][ichan], 1 )
  559. ax1 = axes[ 2*ichan ]
  560. #ax1.get_yaxis().get_major_formatter().set_useOffset(False)
  561. y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  562. ax1.yaxis.set_major_formatter(y_formatter)
  563. #ax1.plot( 1e3*self.DATADICT[pulse][chan]["FFT"]["nu"][0:len(SimpleStack[pulse][chan])], np.average(SimpleStack[pulse][chan], 0 )) #, color='darkblue' )
  564. #ax1.pcolor( np.real(SimpleStack[pulse][chan]) ) #, color='darkblue' )
  565. ax1.matshow( np.real(SimpleStack[pulse][chan]), aspect='auto') #, color='darkblue' )
  566. ax1.set_title("Ch." + str(chan) + ": avg FID", fontsize=8)
  567. ax1.set_xlabel(r"time (ms)", fontsize=8)
  568. if ichan == 0:
  569. ax1.set_ylabel(r"signal [nV]", fontsize=8)
  570. else:
  571. plt.setp(ax1.get_yticklabels(), visible=False)
  572. plt.setp(ax1.get_yaxis().get_offset_text(), visible=False)
  573. ichan += 1
  574. #########################
  575. # Oulier rejectig stack #
  576. #########################
  577. if outlierTest == "MAD":
  578. MADStack = {}
  579. VarStack = {}
  580. #1.4826 is assumption of gaussian noise
  581. madstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  582. self.DATADICT["nPulseMoments"],\
  583. len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1))
  584. varstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  585. self.DATADICT["nPulseMoments"],\
  586. len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1))
  587. for pulse in self.DATADICT["PULSES"]:
  588. MADStack[pulse] = {}
  589. VarStack[pulse] = {}
  590. ichan = 0
  591. for chan in self.DATADICT[pulse]["chan"]:
  592. ax1 = axes[ 2*ichan ]
  593. for ipm in range(self.DATADICT["nPulseMoments"]):
  594. # # brutal loop over time, can this be vectorized?
  595. # for it in range(len(self.DATADICT[pulse]["TIMES"])):
  596. # x = 1e9 *Stack[pulse][ichan,ipm,:,it]
  597. # MAD = 1.4826 * np.median( np.abs(x-np.median(x)) )
  598. # good = 0
  599. # for istack in self.DATADICT["stacks"]:
  600. # if (np.abs(x[istack-1]-np.median(x))) / MAD < 2:
  601. # good += 1
  602. # madstack[ ichan, ipm, it ] += x[istack-1]
  603. # else:
  604. # pass
  605. # madstack[ichan, ipm, it] /= good
  606. # percent = int(1e2* (float)(ipm) / (float)(self.DATADICT["nPulseMoments"]) )
  607. # self.progressTrigger.emit(percent)
  608. # Vectorized version of above...much, much faster
  609. x = 1e9*copy.deepcopy(Stack[pulse][ichan][ipm,:,:]) # stack and time indices
  610. tile_med = np.tile( np.median(x, axis=0), (np.shape(x)[0],1))
  611. MAD = MADcutoff * np.median(np.abs(x - tile_med), axis=0)
  612. tile_MAD = np.tile( MAD, (np.shape(x)[0],1))
  613. good = np.abs(x-tile_med)/tile_MAD < 2. # 1.4826 # 2
  614. madstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).mean(axis=0) )
  615. varstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).std(axis=0) )
  616. # reporting
  617. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  618. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  619. self.progressTrigger.emit(percent)
  620. ax2 = axes[2*ichan+1] # TODO fix hard coded number
  621. #ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( madstack[ichan], 0 ))# , color='darkred')
  622. MADStack[pulse][chan] = madstack[ichan]
  623. VarStack[pulse][chan] = varstack[ichan]
  624. ax2.matshow( np.real(MADStack[pulse][chan]), aspect='auto') #, color='darkblue' )
  625. ichan += 1
  626. self.DATADICT["stack"] = MADStack
  627. else:
  628. self.DATADICT["stack"] = SimpleStack
  629. # #########################################
  630. # # Plot Fourier Transform representation #
  631. # #########################################
  632. #
  633. # # canvas.fig.subplots_adjust(right=0.8)
  634. # # cbar_ax = canvas.fig.add_axes([0.85, 0.1, 0.015, 0.355])
  635. # # cbar_ax.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  636. # im2 = []
  637. # im1 = []
  638. # for pulse in self.DATADICT["PULSES"]:
  639. # ichan = 0
  640. # axes = canvas.fig.axes
  641. # vvmin = 1e10
  642. # vvmax = 0
  643. # for chan in self.DATADICT[pulse]["chan"]:
  644. # ax1 = axes[2*ichan ]
  645. # ax2 = axes[2*ichan+1] # TODO fix hard coded number
  646. # if outlierTest == "MAD":
  647. # X = np.fft.rfft( MADStack[pulse][chan][0,:] )
  648. # nu = np.fft.fftfreq(len( MADStack[pulse][chan][0,:]), d=self.dt)
  649. # else:
  650. # X = np.fft.rfft( SimpleStack[pulse][chan][0,:] )
  651. # nu = np.fft.fftfreq(len( SimpleStack[pulse][chan][0,:]), d=self.dt)
  652. #
  653. # nu = nu[0:len(X)]
  654. # nu[-1] = np.abs(nu[-1])
  655. # df = nu[1] - nu[0]
  656. # of = 0
  657. #
  658. # istart = int((self.transFreq-50.)/df)
  659. # iend = int((self.transFreq+50.)/df)
  660. # of = nu[istart]
  661. #
  662. # def freqlabel(xxx, pos):
  663. # return '%1.0f' %(of + xxx*df)
  664. # formatter = FuncFormatter(freqlabel)
  665. #
  666. # SFFT = np.zeros( (self.DATADICT["nPulseMoments"], len(X)), dtype=np.complex64 )
  667. # SFFT[0,:] = X
  668. # for ipm in range(1, self.DATADICT["nPulseMoments"]):
  669. # if outlierTest == "MAD":
  670. # SFFT[ipm,:] = np.fft.rfft( MADStack[pulse][chan][ipm,:] )
  671. # else:
  672. # SFFT[ipm,:] = np.fft.rfft( SimpleStack[pulse][chan][ipm,:] )
  673. #
  674. # # convert to dB and add colorbars
  675. # #db = 20.*np.log10(np.abs(SFFT[:,istart:iend]))
  676. # db = (np.abs(SFFT[:,istart:iend]))
  677. # #db = (np.real(SFFT[:,istart:iend]))
  678. # #dbr = (np.real(SFFT[:,istart:iend]))
  679. # #db = (np.imag(SFFT[:,istart:iend]))
  680. #
  681. # vvmin = min(vvmin, np.min (db))
  682. # vvmax = max(vvmax, np.max (db))
  683. # im2.append(ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax))
  684. # #im1.append(ax1.matshow( dbr, aspect='auto')) #, vmin=vvmin, vmax=vvmax))
  685. # #im2.append(ax2.matshow( db, aspect='auto', vmin=vvmin, vmax=vvmax))
  686. # #im2 = ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax)
  687. # if ichan == 0:
  688. # ax2.set_ylabel(r"$q$ (A $\cdot$ s)", fontsize=8)
  689. # else:
  690. # #ax2.yaxis.set_ticklabels([])
  691. # plt.setp(ax2.get_yticklabels(), visible=False)
  692. #
  693. # ax2.xaxis.set_major_formatter(formatter)
  694. # ax2.xaxis.set_ticks_position('bottom')
  695. # ax2.xaxis.set_major_locator(MaxNLocator(3))
  696. #
  697. # y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  698. # ax2.yaxis.set_major_formatter(y_formatter)
  699. #
  700. #
  701. # #if chan == self.DATADICT[pulse]["chan"][-1]:
  702. # #cb2 = canvas.fig.colorbar(im2, cax=cbar_ax, format='%1.0e')
  703. #
  704. # #cb2 = canvas.fig.colorbar(im2[0], ax=ax2, format='%1.0e', orientation='horizontal')
  705. # #cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e', orientation='horizontal')
  706. # #cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  707. # #cb2.set_label("signal (dB)", fontsize=8)
  708. #
  709. # ichan += 1
  710. #
  711. #
  712. # canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  713. #
  714. # #cb1 = canvas.fig.colorbar(im, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  715. # #cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  716. # #cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  717. #
  718. # cb2 = canvas.fig.colorbar(im2[-1], ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  719. # cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  720. # cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  721. #canvas.fig.tight_layout()
  722. canvas.draw()
  723. self.doneTrigger.emit()
  724. def sumData(self, canvas, fred):
  725. chans = copy.deepcopy(self.DATADICT[self.DATADICT["PULSES"][0]]["chan"]) #= np.array( ( self.DATADICT[pulse]["chan"][0], ) )
  726. nchan = len(chans)
  727. # Sum permutations of two channel combos
  728. for ich in range(nchan-1):
  729. for ch in chans[ich+1:]:
  730. chsum = chans[ich] + "+" + ch
  731. for pulse in self.DATADICT["PULSES"]:
  732. self.DATADICT[pulse][chsum] = {}
  733. for ipm in range(self.DATADICT["nPulseMoments"]):
  734. self.DATADICT[pulse][chsum][ipm] = {}
  735. for istack in self.DATADICT["stacks"]:
  736. self.DATADICT[pulse][chsum][ipm][istack] = self.DATADICT[pulse][chans[ich]][ipm][istack] - self.DATADICT[pulse][ch][ipm][istack]
  737. if chsum == "1+2":
  738. #self.DATADICT[pulse]["rchan"].pop()
  739. #self.DATADICT[pulse]["rchan"].pop()
  740. self.DATADICT[pulse]["chan"].append(chsum)
  741. # Sum all channels
  742. sumall = False
  743. if sumall:
  744. chsum = ""
  745. for ch in chans:
  746. chsum += ch + "+"
  747. chsum = chsum[0:-1] # remove last "+"
  748. for pulse in self.DATADICT["PULSES"]:
  749. self.DATADICT[pulse][chsum] = {}
  750. for ipm in range(self.DATADICT["nPulseMoments"]):
  751. self.DATADICT[pulse][chsum][ipm] = {}
  752. for istack in self.DATADICT["stacks"]:
  753. self.DATADICT[pulse][chsum][ipm][istack] = copy.deepcopy(self.DATADICT[pulse][chans[0]][ipm][istack])
  754. for ch in chans[1:]:
  755. self.DATADICT[pulse][chsum][ipm][istack] += self.DATADICT[pulse][ch][ipm][istack]
  756. self.DATADICT[pulse]["chan"].append(chsum)
  757. # if nchan > 2:
  758. # for ch in chans:
  759. # chsum += ch
  760. # for ch2 in chans[1::]:
  761. # for pulse in self.DATADICT["PULSES"]:
  762. # self.DATADICT[pulse][chsum] = {}
  763. # for istack in self.DATADICT["stacks"]:
  764. # self.DATADICT[pulse][chsum][ipm][istack] = self.DATADICT[pulse][chans[ich]][ipm][istack] + self.DATADICT[pulse][ch][ipm][istack]
  765. self.doneTrigger.emit()
  766. def quadDet(self, clip, phase, canvas):
  767. from scipy import signal
  768. self.RotatedAmplitude = True
  769. wL = self.transFreq * 2*np.pi
  770. vL = self.transFreq
  771. #T = 50
  772. dt = self.dt
  773. #DT = 0.01
  774. CA = {} # corrected amplitude
  775. IP = {} # instantaneous phase
  776. NR = {} # Noise residual
  777. RE = {} # Real channel
  778. IM = {} # Imaginary channel
  779. # global maximums for plotting
  780. CAmax = {}
  781. NRmax = {}
  782. REmax = {}
  783. IMmax = {}
  784. E0,phi,df,T2 = 100.,0,0,.2
  785. first = False
  786. self.sigma = {}
  787. for pulse in self.DATADICT["PULSES"]:
  788. CA[pulse] = {}
  789. IP[pulse] = {}
  790. NR[pulse] = {}
  791. RE[pulse] = {}
  792. IM[pulse] = {}
  793. CAmax[pulse] = 0
  794. NRmax[pulse] = 0
  795. REmax[pulse] = 0
  796. IMmax[pulse] = 0
  797. ichan = 0
  798. self.sigma[pulse] = {}
  799. for chan in self.DATADICT[pulse]["chan"]:
  800. CA[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  801. IP[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  802. NR[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  803. RE[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  804. IM[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  805. for ipm in range(0, self.DATADICT["nPulseMoments"]):
  806. #t = self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1]
  807. xn = self.DATADICT["stack"][pulse][chan][ipm,:]
  808. ht = signal.hilbert(xn)*np.exp(-1j*wL*self.DATADICT[pulse]["TIMES"])
  809. #############################################################
  810. # Quadrature signal
  811. RE[pulse][chan][ipm,:] = np.real(ht[clip::])
  812. IM[pulse][chan][ipm,:] = np.imag(ht[clip::])
  813. REmax[pulse] = max(REmax[pulse], np.max(np.real(ht[clip::])))
  814. IMmax[pulse] = max(IMmax[pulse], np.max(np.imag(ht[clip::])))
  815. #############################################################
  816. # Instantaneous phase
  817. IP[pulse][chan][ipm,:] = np.angle(ht)[clip::]
  818. #############################################################
  819. # Rotated amplitude
  820. #if ipm != 0:
  821. #[success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"], (E0,phi,df,T2))
  822. #[success, E0, df, phi, T2] = decay.quadratureDetect( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"] )
  823. #else:
  824. [success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"])
  825. #[success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"], (E0,phi,df,T2))
  826. #[success, E0, df, phi, T2] = decay.quadratureDetect( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"] )
  827. #print("success", success, "E0", E0, "phi", phi, "df", df, "T2", T2)
  828. D = self.RotateAmplitude( ht.real, ht.imag, phi, df, self.DATADICT[pulse]["TIMES"] )
  829. CA[pulse][chan][ipm,:] = D.imag[clip::] # amplitude data
  830. NR[pulse][chan][ipm,:] = D.real[clip::] # noise data
  831. CAmax[pulse] = max(CAmax[pulse], np.max(D.imag[clip::]) )
  832. NRmax[pulse] = max(NRmax[pulse], np.max(D.real[clip::]) )
  833. self.sigma[pulse][chan] = np.std(NR[pulse][chan])
  834. # reporting
  835. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  836. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  837. self.progressTrigger.emit(percent)
  838. ichan += 1
  839. self.DATADICT["CA"] = CA
  840. self.DATADICT["IP"] = IP
  841. self.DATADICT["NR"] = NR
  842. self.DATADICT["RE"] = RE
  843. self.DATADICT["IM"] = IM
  844. self.DATADICT["CAmax"] = CAmax
  845. self.DATADICT["NRmax"] = NRmax
  846. self.DATADICT["REmax"] = REmax
  847. self.DATADICT["IMmax"] = IMmax
  848. self.doneTrigger.emit()
  849. def plotQuadDet(self, clip, phase, canvas):
  850. canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False)
  851. ###############
  852. # Plot on GUI #
  853. ###############
  854. dcmap = cmocean.cm.curl_r #"seismic_r" #cmocean.cm.balance_r #"RdBu" #YlGn" # "coolwarm_r" # diverging
  855. canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False)
  856. for pulse in self.DATADICT["PULSES"]:
  857. ichan = 0
  858. axes = canvas.fig.axes
  859. mmaxr = 0.
  860. mmaxi = 0.
  861. if clip > 0:
  862. time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"][clip-1::] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  863. else:
  864. time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  865. QQ = np.average(self.DATADICT[pulse]["Q"], axis=1 )
  866. for chan in self.DATADICT[pulse]["chan"]:
  867. ax1 = axes[2*ichan ]
  868. ax2 = axes[2*ichan+1] # TODO fix hard coded number
  869. if phase == 0: # Re Im
  870. im1 = ax1.pcolormesh( time_sp, QQ, self.DATADICT["RE"][pulse][chan], cmap=dcmap, rasterized=True,\
  871. vmin=-self.DATADICT["REmax"][pulse] , vmax=self.DATADICT["REmax"][pulse] )
  872. im2 = ax2.pcolormesh( time_sp, QQ, self.DATADICT["IM"][pulse][chan], cmap=dcmap, rasterized=True,\
  873. vmin=-self.DATADICT["IMmax"][pulse], vmax=self.DATADICT["IMmax"][pulse] )
  874. if phase == 1: # Amp phase
  875. im1 = ax1.pcolormesh( time_sp, QQ, self.DATADICT["CA"][pulse][chan], cmap=dcmap, rasterized=True,
  876. vmin=-self.DATADICT["CAmax"][pulse] , vmax=self.DATADICT["CAmax"][pulse] )
  877. im2 = ax2.pcolormesh( time_sp, QQ, self.DATADICT["IP"][pulse][chan], cmap=cmocean.cm.phase, rasterized=True,\
  878. vmin=-np.pi, vmax=np.pi)
  879. if phase == 2: # CA NR
  880. im1 = ax1.pcolormesh( time_sp, QQ, self.DATADICT["CA"][pulse][chan], cmap=dcmap, rasterized=True,\
  881. vmin=-self.DATADICT["CAmax"][pulse] , vmax=self.DATADICT["CAmax"][pulse] )
  882. im2 = ax2.pcolormesh( time_sp, QQ, self.DATADICT["NR"][pulse][chan], cmap=dcmap, rasterized=True,\
  883. vmin=-self.DATADICT["NRmax"][pulse] , vmax=self.DATADICT["NRmax"][pulse] )
  884. # cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e')
  885. # cb2.set_label("Noise residual (nV)", fontsize=8)
  886. # cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  887. # cb1 = canvas.fig.colorbar(im1, ax=ax1, format='%1.0e')
  888. # cb1.set_label("Phased amplitude (nV)", fontsize=8)
  889. # cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  890. # cb2 = canvas.fig.colorbar(im2, ax=ax2, format="%1.0e")
  891. # cb2.set_label("Phase (rad)", fontsize=8)
  892. # cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  893. # cb1 = canvas.fig.colorbar(im1, ax=ax1, format="%1.0e")
  894. # cb1.set_label("FID (nV)", fontsize=8)
  895. # cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  896. # if you save these as pdf or eps, there are artefacts
  897. # for cbar in [cb1,cb2]:
  898. # #cbar.solids.set_rasterized(True)
  899. # cbar.solids.set_edgecolor("face")
  900. # reporting
  901. percent = int(1e2* (float)(ichan)/len(self.DATADICT[pulse]["chan"]))
  902. self.progressTrigger.emit(percent)
  903. if ichan == 0:
  904. ax1.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  905. ax2.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  906. else:
  907. #ax2.yaxis.set_ticklabels([])
  908. #ax1.yaxis.set_ticklabels([])
  909. plt.setp(ax1.get_yticklabels(), visible=False)
  910. plt.setp(ax2.get_yticklabels(), visible=False)
  911. ichan += 1
  912. ax1.set_yscale('log')
  913. ax2.set_yscale('log')
  914. plt.setp(ax1.get_xticklabels(), visible=False)
  915. ax1.set_ylim( np.min(QQ), np.max(QQ) )
  916. ax2.set_ylim( np.min(QQ), np.max(QQ) )
  917. ax1.set_xlim( np.min(time_sp), np.max(time_sp) )
  918. ax2.set_xlim( np.min(time_sp), np.max(time_sp) )
  919. #ax2.set_xlabel(r"Time since end of pulse (ms)", fontsize=8)
  920. ax2.set_xlabel(r"Time (ms)", fontsize=8)
  921. canvas.fig.subplots_adjust(hspace=.15, wspace=.05, left=.075, right=.95, bottom=.1, top=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  922. tick_locator = MaxNLocator(nbins=3)
  923. cb1 = canvas.fig.colorbar(im1, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  924. cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  925. cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  926. cb1.locator = tick_locator
  927. cb1.update_ticks()
  928. tick_locator2 = MaxNLocator(nbins=3)
  929. cb2 = canvas.fig.colorbar(im2, ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30, pad=.2)
  930. cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  931. cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  932. cb2.locator = tick_locator2
  933. cb2.update_ticks()
  934. canvas.draw()
  935. self.doneTrigger.emit()
  936. def RotateAmplitude(self, X, Y, zeta, df, t):
  937. V = X + 1j*Y
  938. return np.abs(V) * np.exp( 1j * ( np.angle(V) - zeta - 2.*np.pi*df*t ) )
  939. def gateIntegrate( self, gpd, clip, canvas ):
  940. """ Gate integrate the real, imaginary, phased, and noise residual channels
  941. """
  942. self.gated = True
  943. self.GATED = {}
  944. for pulse in self.DATADICT["PULSES"]:
  945. QQ = np.average(self.DATADICT[pulse]["Q"], axis=1 )
  946. ichan = 0
  947. for chan in self.DATADICT[pulse]["chan"]:
  948. self.GATED[chan] = {}
  949. for ipm in range(0, self.DATADICT["nPulseMoments"]):
  950. # Time since pulse rather than since record starts...
  951. #if clip > 0:
  952. # time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"][clip:] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  953. #else:
  954. time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  955. #GT, GD, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["CA"][pulse][chan][ipm,:], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  956. #GT2, GP, GTT, sig_stack_err, isum = rotate.gateIntegrate( self.DATADICT["NR"][pulse][chan][ipm,:], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  957. GT, GCA, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["CA"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  958. GT, GNR, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["NR"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  959. GT, GRE, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["RE"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  960. GT, GIM, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["IM"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  961. GT, GIP, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["IP"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  962. if ipm == 0:
  963. # self.GATED[chan]["DATA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) )
  964. # self.GATED[chan]["ERR"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) )
  965. # self.GATED[chan]["SIGMA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) )
  966. self.GATED[chan]["CA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  967. self.GATED[chan]["NR"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  968. self.GATED[chan]["RE"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  969. self.GATED[chan]["IM"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  970. self.GATED[chan]["IP"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  971. self.GATED[chan]["isum"] = isum
  972. #self.GATED[chan]["DATA"][ipm] = GD.real
  973. self.GATEDABSCISSA = GT[clip:]
  974. self.GATEDWINDOW = GTT[clip:]
  975. #self.GATED[chan]["SIGMA"][ipm] = sig_stack #_err # GP.real
  976. #self.GATED[chan]["ERR"][ipm] = GP.real
  977. self.GATED[chan]["CA"][ipm] = GCA.real[clip:]
  978. self.GATED[chan]["NR"][ipm] = GNR.real[clip:]
  979. self.GATED[chan]["RE"][ipm] = GRE.real[clip:]
  980. self.GATED[chan]["IM"][ipm] = GIM.real[clip:]
  981. self.GATED[chan]["IP"][ipm] = GIP.real[clip:]
  982. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  983. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  984. self.progressTrigger.emit(percent)
  985. self.GATED[chan]["GTT"] = GTT[clip:]
  986. self.GATED[chan]["GT"] = GT[clip:]
  987. self.GATED[chan]["QQ"] = QQ
  988. ichan += 1
  989. self.doneTrigger.emit()
  990. def bootstrap_resample(self, X, n=None):
  991. # from http://nbviewer.jupyter.org/gist/aflaxman/6871948
  992. """ Bootstrap resample an array_like
  993. Parameters
  994. ----------
  995. X : array_like
  996. data to resample
  997. n : int, optional
  998. length of resampled array, equal to len(X) if n==None
  999. Results
  1000. -------
  1001. returns X_resamples
  1002. """
  1003. if n == None:
  1004. n = len(X)
  1005. resample_i = np.floor(np.random.rand(n)*len(X)).astype(int)
  1006. return X[resample_i]
  1007. def bootstrap_sigma(self, pulse, chan):
  1008. # bootstrap resample
  1009. nt = len(self.GATED[chan]["GT"])
  1010. nb = 5000
  1011. XS = np.zeros( (nb, nt) )
  1012. for ii in range(nb):
  1013. for it in range(nt):
  1014. if self.GATED[chan]["isum"][it] < 8:
  1015. XS[ii, it] = self.sigma[pulse][chan]
  1016. else:
  1017. if it == 0:
  1018. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], \
  1019. self.GATED[chan]["NR"][:,it+2], self.GATED[chan]["NR"][:,it+3] ) ), n=nt )
  1020. elif it == 1:
  1021. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it], \
  1022. self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] ) ), n=nt )
  1023. elif it == nt-2:
  1024. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it], \
  1025. self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it-2] ) ), n=nt )
  1026. elif it == nt-1:
  1027. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it-1], \
  1028. self.GATED[chan]["NR"][:,it-2], self.GATED[chan]["NR"][:,it-3] ) ), n=nt )
  1029. else:
  1030. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-2] , self.GATED[chan]["NR"][:,it-1], \
  1031. self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] )), n=nt )
  1032. XS[ii,it] = np.std(X)
  1033. return XS
  1034. def plotGateIntegrate( self, gpd, clip, phase, canvas ):
  1035. """ Plot the gate integration
  1036. """
  1037. canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False)
  1038. axes = canvas.fig.axes
  1039. cmap = cmocean.cm.balance_r
  1040. # Calculate maximum for plotting...TODO move into loop above
  1041. vmax1 = 0
  1042. vmax2 = 0
  1043. for pulse in self.DATADICT["PULSES"]:
  1044. for chan in self.DATADICT[pulse]["chan"]:
  1045. if phase == 0:
  1046. vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["RE"])))
  1047. vmax2 = max(vmax2, np.max(np.abs(self.GATED[chan]["IM"])))
  1048. elif phase == 1:
  1049. vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["CA"])))
  1050. vmax2 = np.pi
  1051. elif phase == 2:
  1052. vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["CA"])))
  1053. vmax2 = max(vmax2, np.max(np.abs(self.GATED[chan]["NR"])))
  1054. for pulse in self.DATADICT["PULSES"]:
  1055. ichan = 0
  1056. for chan in self.DATADICT[pulse]["chan"]:
  1057. ax1 = axes[2*ichan ]
  1058. ax2 = axes[2*ichan+1]
  1059. if phase == 0:
  1060. im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["RE"], cmap=cmap, vmin=-vmax1, vmax=vmax1)
  1061. im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["IM"], cmap=cmap, vmin=-vmax2, vmax=vmax2)
  1062. elif phase == 1:
  1063. im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["CA"], cmap=cmap, vmin=-vmax1, vmax=vmax1)
  1064. im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["IP"], cmap=cmocean.cm.phase, vmin=-vmax2, vmax=vmax2)
  1065. elif phase == 2:
  1066. im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["CA"], cmap=cmap, vmin=-vmax1, vmax=vmax1)
  1067. XS = self.bootstrap_sigma(pulse, chan)
  1068. #im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["NR"], cmap=cmap, vmin=-vmax2, vmax=vmax2)
  1069. # bootstrap resample
  1070. # nt = len(self.GATED[chan]["GT"])
  1071. # nb = 5000
  1072. # XS = np.zeros( (nb, nt) )
  1073. # for ii in range(nb):
  1074. # #XS = []
  1075. # for it in range(nt):
  1076. # if self.GATED[chan]["isum"][it] < 8:
  1077. # XS[ii, it] = self.sigma[pulse][chan]
  1078. # else:
  1079. # if it == 0:
  1080. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], \
  1081. # self.GATED[chan]["NR"][:,it+2], self.GATED[chan]["NR"][:,it+3] ) ), n=nt )
  1082. # if it == 1:
  1083. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it], \
  1084. # self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] ) ), n=nt )
  1085. # elif it == nt-2:
  1086. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it], \
  1087. # self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it-2] ) ), n=nt )
  1088. # elif it == nt-1:
  1089. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it-1], \
  1090. # self.GATED[chan]["NR"][:,it-2], self.GATED[chan]["NR"][:,it-3] ) ), n=nt )
  1091. # else:
  1092. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-2] , self.GATED[chan]["NR"][:,it-1], \
  1093. # self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] )), n=nt )
  1094. # XS[ii,it] = np.std(X)
  1095. #if ii == 0:
  1096. # ax2.plot( self.GATED[chan]["GT"], XS[ii], '-', linewidth=1, markersize=4, alpha=.5, color='lightgrey', label = "bootstrap sim" )
  1097. #else:
  1098. # ax2.plot( self.GATED[chan]["GT"], XS[ii], '-', linewidth=1, markersize=4, alpha=.5, color='lightgrey' )
  1099. ax2.plot( self.GATED[chan]["GT"], np.std(self.GATED[chan]["NR"], axis=0), color='darkgrey', linewidth=2, label="gate std" )
  1100. ax2.plot( np.tile(self.GATED[chan]["GT"], (5000,1) ), XS, '.', color='lightgrey', linewidth=1, alpha=.5 )
  1101. ax2.plot( self.GATED[chan]["GT"], np.average(XS, axis=0), color='black', linewidth=2, label="bootstrap avg." )
  1102. ax2.plot( self.GATED[chan]["GT"], np.median(XS, axis=0), color='black', linewidth=2, label="bootstrap med." )
  1103. ax2.legend()
  1104. im1.set_edgecolor('face')
  1105. if phase != 2:
  1106. im2.set_edgecolor('face')
  1107. plt.setp(ax1.get_xticklabels(), visible=False)
  1108. ax1.set_ylim( np.min(self.GATED[chan]["QQ"]), np.max(self.GATED[chan]["QQ"]) )
  1109. if phase != 2:
  1110. ax2.set_ylim( np.min(self.GATED[chan]["QQ"]), np.max(self.GATED[chan]["QQ"]) )
  1111. ax1.set_xlim( np.min(self.GATED[chan]["GTT"]), np.max(self.GATED[chan]["GTT"]) )
  1112. ax2.set_xlim( np.min(self.GATED[chan]["GTT"]), np.max(self.GATED[chan]["GTT"]) )
  1113. ax1.set_yscale('log')
  1114. ax2.set_yscale('log')
  1115. qlabs = np.append(np.concatenate( ( self.GATED[chan]["QQ"][0:1], self.GATED[chan]["QQ"][9::10] )), self.GATED[chan]["QQ"][-1] )
  1116. ax1.yaxis.set_ticks( qlabs ) # np.append(np.concatenate( (QQ[0:1],QQ[9::10] )), QQ[-1] ) )
  1117. if phase != 2:
  1118. ax2.yaxis.set_ticks( qlabs ) #np.append(np.concatenate( (QQ[0:1],QQ[9::10] )), QQ[-1] ) )
  1119. #formatter = matplotlib.ticker.LogFormatter(10, labelOnlyBase=False)
  1120. formatter = matplotlib.ticker.FuncFormatter(lambda x, pos: str((round(x,1))))
  1121. ax1.yaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1122. ax2.yaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1123. ax1.xaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1124. ax2.xaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1125. ax1.set_xscale('log')
  1126. ax2.set_xscale('log')
  1127. if ichan == 0:
  1128. ax1.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  1129. if phase == 2:
  1130. ax2.set_ylabel(r"noise est. (nV)", fontsize=8)
  1131. else:
  1132. ax2.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  1133. else:
  1134. plt.setp(ax1.get_yticklabels(), visible=False)
  1135. plt.setp(ax2.get_yticklabels(), visible=False)
  1136. ax2.set_xlabel(r"$t-\tau_p$ (ms)", fontsize=8)
  1137. ichan += 1
  1138. #canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.925 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  1139. #canvas.fig.tight_layout()
  1140. #canvas.draw()
  1141. canvas.fig.subplots_adjust(hspace=.15, wspace=.05, left=.075, right=.95, bottom=.1, top=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  1142. tick_locator = MaxNLocator(nbins=5)
  1143. cb1 = canvas.fig.colorbar(im1, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  1144. cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  1145. cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  1146. cb1.locator = tick_locator
  1147. cb1.update_ticks()
  1148. if phase != 2:
  1149. cb2 = canvas.fig.colorbar(im2, ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30, pad=.2)
  1150. cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  1151. cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  1152. cb2.locator = tick_locator
  1153. cb2.update_ticks()
  1154. canvas.draw()
  1155. self.doneTrigger.emit()
  1156. def FDSmartStack(self, cv, canvas):
  1157. from matplotlib.colors import LogNorm
  1158. from matplotlib.ticker import MaxNLocator
  1159. """
  1160. Currently this stacks 4-phase second pulse data only, we need to generalise
  1161. """
  1162. try:
  1163. canvas.fig.clear()
  1164. except:
  1165. pass
  1166. self.dataCubeFFT( )
  1167. # canvas.ax1 = canvas.fig.add_axes([.1, .1, .8, .8])
  1168. canvas.ax1 = canvas.fig.add_axes([.1, .1, .2, .8])
  1169. canvas.ax2 = canvas.fig.add_axes([.325, .1, .2, .8])
  1170. canvas.ax3 = canvas.fig.add_axes([.55, .1, .2, .8])
  1171. canvas.ax4 = canvas.fig.add_axes([.815, .1, .05, .8]) #cb
  1172. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1173. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1174. canvas.ax3.tick_params(axis='both', which='major', labelsize=8)
  1175. canvas.ax4.tick_params(axis='both', which='major', labelsize=8)
  1176. canvas.ax1.set_ylabel("pulse index", fontsize=8)
  1177. canvas.ax1.set_xlabel(r"$\omega$ bin", fontsize=8)
  1178. canvas.ax2.set_xlabel(r"$\omega$ bin", fontsize=8)
  1179. canvas.ax3.set_xlabel(r"$\omega$ bin", fontsize=8)
  1180. canvas.ax2.yaxis.set_ticklabels([])
  1181. canvas.ax3.yaxis.set_ticklabels([])
  1182. #canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1183. # # Look at pulses
  1184. # for pulse in self.DATADICT["PULSES"]:
  1185. # for istack in self.DATADICT["stacks"]:
  1186. # for ipm in range(0,3):
  1187. # canvas.ax1.plot( self.DATADICT[pulse]["CURRENT"][ipm][istack] , label="istack "+str(istack) + " ipm=" + str(ipm) + pulse )
  1188. # canvas.draw()
  1189. # Create Container for stacks
  1190. # sandbox determine pulse sequence again
  1191. for pulse in self.DATADICT["PULSES"]:
  1192. for ichan in self.DATADICT[pulse]["chan"]:
  1193. #for ipm in range(10,11):
  1194. CONTAINER = {}
  1195. CONTAINER["Cycle 1"] = [] # These are actually subtracted cycles... v+ - v
  1196. CONTAINER["Cycle 2"] = []
  1197. for istack in self.DATADICT["stacks"]:
  1198. #canvas.ax1.clear()
  1199. ipm = 8
  1200. #for ipm in range(self.DATADICT["nPulseMoments"]):
  1201. #canvas.ax1.matshow( np.real(self.DATADICT[pulse][ichan]["FFT"][istack]), aspect='auto' )
  1202. #canvas.draw()
  1203. if not istack%4%4:
  1204. # phase cycle 4, aligned with 1 after sub
  1205. CONTAINER["Cycle 1"].append(-self.DATADICT[pulse][ichan]["FFT"][istack])
  1206. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], -self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1207. elif not istack%4%3:
  1208. # phase cycle 3, aligned with 2 after sub
  1209. CONTAINER["Cycle 2"].append(-self.DATADICT[pulse][ichan]["FFT"][istack])
  1210. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], -self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1211. elif not istack%4%2:
  1212. # phase cycle 2
  1213. CONTAINER["Cycle 2"].append( self.DATADICT[pulse][ichan]["FFT"][istack])
  1214. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1215. else:
  1216. # phase cycle 1
  1217. CONTAINER["Cycle 1"].append( self.DATADICT[pulse][ichan]["FFT"][istack])
  1218. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1219. #canvas.ax1.matshow(np.array(np.average(self.DATADICT[pulse][ichan]["FFT"]), axis=2), aspect='auto' )
  1220. #canvas.ax1.plot( self.DATADICT[pulse]["PULSE_TIMES"], self.DATADICT[pulse]["CURRENT"][ipm][istack] , color='black', label="istack "+str(istack) )
  1221. #canvas.ax1.plot( self.DATADICT[pulse]["CURRENT"][ipm][istack] , label="istack "+str(istack) + " iFID" + str(iFID) )
  1222. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1223. #canvas.ax1.legend(prop={'size':6})
  1224. #canvas.draw()
  1225. # Boostrap
  1226. # stack.
  1227. #scipy.random.shuffle(x)
  1228. # Stack and calculate the pooled variance (http://en.wikipedia.org/wiki/Pooled_variance)
  1229. """ All this phase cycling wreaks havoc on a normal calculation of std. and variance. Instead, we resort to calculating
  1230. a pooled variance. In this assumption is that the precision of the measurment is constant. This is a poor choice for
  1231. any type of moving sensor.
  1232. """
  1233. # if a window filter has been applied
  1234. #self.WINDOW
  1235. #self.IWindowStart
  1236. #self.iWindowEnd
  1237. #self.FFTtimes
  1238. CONTAINER = .5*(np.array(CONTAINER["Cycle 2"]) - np.array(CONTAINER["Cycle 1"]))
  1239. print ("container shape", np.shape( CONTAINER), self.iWindowStart+1, self.iWindowEnd-1)
  1240. dmin = np.min(np.abs(np.average(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1], axis=0)))
  1241. dmax = np.max(np.abs(np.average(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1], axis=0)))
  1242. mn = canvas.ax1.matshow( 20.*np.log10(np.abs(np.average(np.array(CONTAINER)[:,:, self.iWindowStart+1:self.iWindowEnd-1], axis=0))), aspect='auto', vmin=-120, vmax=-40)
  1243. #mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm())
  1244. canvas.ax2.matshow( 20*np.log10(np.std(np.real(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1]), axis=0)), aspect='auto', vmin=-120, vmax=-40)
  1245. canvas.ax3.matshow( 20*np.log10(np.std(np.imag(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1]), axis=0)), aspect='auto', vmin=-120, vmax=-40)
  1246. #canvas.ax1.legend(prop={'size':6})
  1247. cb1 = mpl.colorbar.Colorbar(canvas.ax4, mn)
  1248. cb1.ax.tick_params(labelsize=8)
  1249. cb1.set_label("power [dB]", fontsize=8)
  1250. canvas.ax1.xaxis.set_major_locator(MaxNLocator(4))
  1251. canvas.ax2.xaxis.set_major_locator(MaxNLocator(4))
  1252. canvas.ax3.xaxis.set_major_locator(MaxNLocator(4))
  1253. canvas.draw()
  1254. self.doneTrigger.emit()
  1255. def effectivePulseMoment(self, cv, canvas):
  1256. canvas.reAxH(2)
  1257. nstack = len(self.DATADICT["stacks"])
  1258. canvas.ax1.set_yscale('log')
  1259. for pulse in self.DATADICT["PULSES"]:
  1260. self.DATADICT[pulse]["qeff"] = {}
  1261. self.DATADICT[pulse]["q_nu"] = {}
  1262. for ipm in range(self.DATADICT["nPulseMoments"]):
  1263. self.DATADICT[pulse]["qeff"][ipm] = {}
  1264. self.DATADICT[pulse]["q_nu"][ipm] = {}
  1265. #canvas.ax1.clear()
  1266. #scolours = np.array( ( np.linspace(0.8,0.4,len(self.DATADICT["stacks"])), \
  1267. # np.linspace(0.0,0.6,len(self.DATADICT["stacks"])), \
  1268. # np.linspace(0.6,0.0,len(self.DATADICT["stacks"])) )
  1269. # ).T
  1270. #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"])))
  1271. #scolours = plt.cm.Blues(np.linspace(0,1,1.5*len(self.DATADICT["stacks"])))
  1272. scolours = cmocean.cm.ice(np.linspace(0,1,1.5*len(self.DATADICT["stacks"])))
  1273. iistack = 0
  1274. for istack in self.DATADICT["stacks"]:
  1275. #self.DATADICT[pulse]["PULSE_TIMES"]
  1276. x = self.DATADICT[pulse]["CURRENT"][ipm][istack]
  1277. X = np.fft.rfft(x)
  1278. v = np.fft.fftfreq(len(x), self.dt)
  1279. v = v[0:len(X)]
  1280. v[-1] = np.abs(v[-1])
  1281. # calculate effective current/moment
  1282. I0 = np.abs(X)/len(X)
  1283. qeff = I0 * (self.DATADICT[pulse]["PULSE_TIMES"][-1]-self.DATADICT[pulse]["PULSE_TIMES"][0])
  1284. canvas.ax1.set_title(r"pulse moment index " +str(ipm), fontsize=10)
  1285. canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=8)
  1286. canvas.ax1.set_ylabel(r"$q_{eff}$ [A$\cdot$sec]", fontsize=8)
  1287. canvas.ax1.plot(v, qeff, color=scolours[iistack] ) # eff current
  1288. self.DATADICT[pulse]["qeff"][ipm][istack] = qeff
  1289. self.DATADICT[pulse]["q_nu"][ipm][istack] = v
  1290. iistack += 1
  1291. canvas.draw()
  1292. percent = int(1e2* (float)((istack)+ipm*self.DATADICT["nPulseMoments"]) /
  1293. (float)(len(self.DATADICT["PULSES"])*self.DATADICT["nPulseMoments"]*nstack))
  1294. self.progressTrigger.emit(percent)
  1295. canvas.draw()
  1296. self.plotQeffNu(cv, canvas.ax2)
  1297. canvas.draw()
  1298. self.doneTrigger.emit()
  1299. def plotQeffNu(self, cv, ax):
  1300. ####################################
  1301. # TODO label fid1 and fid2, and make a legend, and colour by pulse
  1302. nstack = len(self.DATADICT["stacks"])
  1303. iFID = 0
  1304. for pulse in self.DATADICT["PULSES"]:
  1305. self.DATADICT[pulse]["Q"] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT["stacks"])) )
  1306. ilabel = True
  1307. for ipm in range(self.DATADICT["nPulseMoments"]):
  1308. #scolours = np.array([0.,0.,1.])
  1309. scolours = cmocean.cm.ice(np.linspace(0,1,1.5*len(self.DATADICT["stacks"])))
  1310. #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"])))
  1311. #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"])))
  1312. istack = 0
  1313. for stack in self.DATADICT["stacks"]:
  1314. # find index
  1315. icv = int (round(cv / self.DATADICT[pulse]["q_nu"][ipm][stack][1]))
  1316. self.DATADICT[pulse]["Q"][ipm,istack] = self.DATADICT[pulse]["qeff"][ipm][stack][icv]
  1317. if ilabel:
  1318. ax.scatter(ipm, self.DATADICT[pulse]["qeff"][ipm][stack][icv], facecolors='none', edgecolors=scolours[istack], label=(str(pulse)))
  1319. ilabel = False
  1320. else:
  1321. ax.scatter(ipm, self.DATADICT[pulse]["qeff"][ipm][stack][icv], facecolors='none', edgecolors=scolours[istack])
  1322. #scolours += np.array((0,1./(nstack+1),-1/(nstack+1.)))
  1323. percent = int(1e2* (float)((istack)+ipm*self.DATADICT["nPulseMoments"]) /
  1324. (float)(len(self.DATADICT["PULSES"])*self.DATADICT["nPulseMoments"]*nstack))
  1325. self.progressTrigger.emit(percent)
  1326. istack += 1
  1327. iFID += 1
  1328. ax.set_xlabel(r"pulse moment index", fontsize=8)
  1329. ax.set_ylabel(r"$q_{eff}$ [A$\cdot$sec]", fontsize=8)
  1330. ax.set_yscale('log')
  1331. ax.set_xlim(0, ax.get_xlim()[1])
  1332. ax.legend(loc='upper right', scatterpoints = 1, prop={'size':6})
  1333. def enableDSP(self):
  1334. self.enableDSPTrigger.emit()
  1335. def adaptiveFilter(self, M, flambda, truncate, mu, PCA, canvas):
  1336. canvas.reAx2(shx=False, shy=False)
  1337. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1338. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1339. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1340. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1341. if truncate:
  1342. itrunc =(int) ( round( 1e-3*truncate*self.samp ) )
  1343. print( "adaptive filter size", 1e3*self.dt*M, " [ms]" )
  1344. Filt = adapt.AdaptiveFilter(flambda)
  1345. H = {}
  1346. for pulse in self.DATADICT["PULSES"]:
  1347. H[pulse] = {}
  1348. for ichan in self.DATADICT[pulse]["chan"]:
  1349. print("setting H", pulse, ichan)
  1350. H[pulse][ichan] = np.zeros(M)
  1351. iFID = 0
  1352. # original ordering...
  1353. #for pulse in self.DATADICT["PULSES"]:
  1354. # for ipm in range(self.DATADICT["nPulseMoments"]):
  1355. # for istack in self.DATADICT["stacks"]:
  1356. # This order makes more sense, same as data collection, verify
  1357. for istack in self.DATADICT["stacks"]:
  1358. for ipm in range(self.DATADICT["nPulseMoments"]):
  1359. for pulse in self.DATADICT["PULSES"]:
  1360. canvas.ax1.clear()
  1361. canvas.ax2.clear()
  1362. for ichan in self.DATADICT[pulse]["chan"]:
  1363. #H = np.zeros(M)
  1364. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9* self.DATADICT[pulse][ichan][ipm][istack],\
  1365. label = "noisy")
  1366. RX = []
  1367. for irchan in self.DATADICT[pulse]["rchan"]:
  1368. RX.append(self.DATADICT[pulse][irchan][ipm][istack][::-1])
  1369. if all(H[pulse][ichan]) == 0:
  1370. # call twice to reconcile filter wind-up
  1371. [e,H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\
  1372. RX,\
  1373. M, mu, PCA, flambda, H[pulse][ichan])
  1374. [e,H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\
  1375. RX,\
  1376. M, mu, PCA, flambda, H[pulse][ichan])
  1377. else:
  1378. [e,H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\
  1379. RX,\
  1380. M, mu, PCA, flambda, H[pulse][ichan])
  1381. # replace
  1382. if truncate:
  1383. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][0:itrunc], 1e9* e[::-1][0:itrunc],\
  1384. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1385. self.DATADICT[pulse][ichan][ipm][istack] = e[::-1][0:itrunc]
  1386. else:
  1387. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9* e[::-1],\
  1388. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1389. self.DATADICT[pulse][ichan][ipm][istack] = e[::-1]
  1390. canvas.ax2.plot( H[pulse][ichan] , label="taps")
  1391. canvas.ax1.legend(prop={'size':6})
  1392. canvas.ax2.legend(prop={'size':6})
  1393. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  1394. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  1395. canvas.ax2.set_xlabel(r"filter index", fontsize=8)
  1396. canvas.ax2.set_ylabel(r"scale factor", fontsize=8)
  1397. canvas.draw()
  1398. # truncate the reference channels too, in case you still need them for something.
  1399. # Otherwise they are no longer aligned with the data
  1400. for rchan in self.DATADICT[pulse]["rchan"]:
  1401. if truncate:
  1402. self.DATADICT[pulse][rchan][ipm][istack] = self.DATADICT[pulse][rchan][ipm][istack][0:itrunc]
  1403. #percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1404. percent = (int)(1e2*((float)(istack*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments*(len(self.DATADICT["stacks"])+1) )))
  1405. self.progressTrigger.emit(percent)
  1406. # # why is this loop here, istack is not part of rest?
  1407. # for istack in self.DATADICT["stacks"]:
  1408. # if truncate:
  1409. # self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][0:itrunc]
  1410. # percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1411. # self.progressTrigger.emit(percent)
  1412. # iFID += 1
  1413. if truncate:
  1414. self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][0:itrunc]
  1415. self.doneTrigger.emit()
  1416. self.updateProcTrigger.emit()
  1417. #self.plotFT(canvas)
  1418. def plotFT(self, canvas, istart=0, iend=0):
  1419. try:
  1420. canvas.fig.clear()
  1421. except:
  1422. pass
  1423. canvas.ax1 = canvas.fig.add_axes([.1, .1, .65, .8])
  1424. canvas.ax1c = canvas.fig.add_axes([.8, .1, .05, .8])
  1425. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1426. for pulse in self.DATADICT["PULSES"]:
  1427. for istack in self.DATADICT["stacks"]:
  1428. for ichan in self.DATADICT[pulse]["chan"]:
  1429. # FFT of stack
  1430. XA = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])/2+1))
  1431. nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt)
  1432. nu[-1] *= -1
  1433. df = nu[1]
  1434. of = 0
  1435. if istart:
  1436. of = nu[istart]
  1437. def freqlabel(x, pos):
  1438. return '%1.0f' %(of + x*df)
  1439. formatter = FuncFormatter(freqlabel)
  1440. canvas.ax1.clear()
  1441. for ipm in range(self.DATADICT["nPulseMoments"]):
  1442. X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1443. XA[ipm,:] = np.abs(X)
  1444. if istart:
  1445. mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm())
  1446. else:
  1447. mn = canvas.ax1.matshow(20.*np.log10(XA), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm())
  1448. smin = np.min(20.*np.log10(XA))
  1449. smax = np.max(20.*np.log10(XA))
  1450. canvas.ax1.xaxis.set_major_formatter(formatter)
  1451. cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn)
  1452. cb1.ax.tick_params(labelsize=8)
  1453. cb1.set_label("signal [dB]", fontsize=8)
  1454. canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=10)
  1455. canvas.ax1.set_ylabel(r"$q_{index}$", fontsize=10)
  1456. canvas.draw()
  1457. def plotFT(self, canvas, istart=0, iend=0):
  1458. try:
  1459. canvas.fig.clear()
  1460. except:
  1461. pass
  1462. canvas.ax1 = canvas.fig.add_axes([.1, .1, .65, .8])
  1463. canvas.ax1c = canvas.fig.add_axes([.8, .1, .05, .8])
  1464. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1465. for pulse in self.DATADICT["PULSES"]:
  1466. for istack in self.DATADICT["stacks"]:
  1467. for ichan in self.DATADICT[pulse]["chan"]:
  1468. # FFT of stack
  1469. XA = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1))
  1470. nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt)
  1471. nu[-1] *= -1
  1472. df = nu[1]
  1473. of = 0
  1474. if istart:
  1475. of = nu[istart]
  1476. def freqlabel(x, pos):
  1477. return '%1.0f' %(of + x*df)
  1478. formatter = FuncFormatter(freqlabel)
  1479. canvas.ax1.clear()
  1480. for ipm in range(self.DATADICT["nPulseMoments"]):
  1481. X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1482. XA[ipm,:] = np.abs(X)
  1483. if istart:
  1484. mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120, cmap='viridis') #, norm=LogNorm())
  1485. else:
  1486. mn = canvas.ax1.matshow(20.*np.log10(XA), aspect='auto', vmax=-40, vmin=-120, cmap='viridis') #, norm=LogNorm())
  1487. canvas.ax1.xaxis.set_major_formatter(formatter)
  1488. cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn)
  1489. cb1.ax.tick_params(labelsize=8)
  1490. cb1.set_label("signal [dB]", fontsize=8)
  1491. canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=10)
  1492. canvas.ax1.set_ylabel(r"$q_{index}$", fontsize=10)
  1493. canvas.draw()
  1494. def dataCubeFFT(self):
  1495. """
  1496. Performs FFT on entire cube of DATA, and REFERENCE channels, but not pulse currents,
  1497. Results are saved to a new field in the data structure
  1498. The GMR varies phase as a function of pulse moment index, so that the first pusle moment is zero phase,
  1499. the second is pi/2 the third is zero. This method corrects for this, so that all pulse moments are in phase.
  1500. Technically we may not want to do this, if there is some system response that this cycles away, and we lose track of
  1501. how many of each cycle we have, could this be problomatic? I think it will come out in the wash as we keep track of the
  1502. rest of the phase cycles. Holy phase cycling batman.
  1503. """
  1504. for pulse in self.DATADICT["PULSES"]:
  1505. for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1506. # FFT of stack
  1507. self.DATADICT[pulse][ichan]["FFT"] = {}
  1508. self.DATADICT[pulse][ichan]["FFT"]["nu"] = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][self.DATADICT["stacks"][0]].size, d=self.dt)
  1509. self.DATADICT[pulse][ichan]["FFT"]["nu"][-1] *= -1
  1510. for istack in self.DATADICT["stacks"]:
  1511. self.DATADICT[pulse][ichan]["FFT"][istack] = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex)
  1512. for ipm in range(self.DATADICT["nPulseMoments"]):
  1513. # Mod works for FID pulse sequences, TODO generalize this for 4 phase T1, etc..
  1514. mod = (-1)**(ipm%2) * (-1)**(istack%2)
  1515. self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft( self.DATADICT[pulse][ichan][ipm][istack] )
  1516. #if ipm%2:
  1517. # odd, phase cycled from previous
  1518. # self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft(-self.DATADICT[pulse][ichan][ipm][istack])
  1519. #else:
  1520. # even, we define as zero phase, first pulse moment has this
  1521. # self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1522. def adaptiveFilterFD(self, ftype, band, centre, canvas):
  1523. try:
  1524. canvas.fig.clear()
  1525. except:
  1526. pass
  1527. canvas.ax1 = canvas.fig.add_axes([.1, .5, .7, .4])
  1528. canvas.ax1c = canvas.fig.add_axes([.85, .5, .05, .4])
  1529. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1530. #canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1531. canvas.ax2 = canvas.fig.add_axes([.1, .05, .7, .4])
  1532. canvas.ax2c = canvas.fig.add_axes([.85, .05, .05, .4])
  1533. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1534. #canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1535. self.dataCubeFFT()
  1536. Filt = adapt.AdaptiveFilter(0.)
  1537. for pulse in self.DATADICT["PULSES"]:
  1538. # Compute window function and dimensions
  1539. [WINDOW, nd, wstart, wend, dead] = self.computeWindow(pulse, band, centre, ftype)
  1540. for istack in self.DATADICT["stacks"]:
  1541. for ichan in self.DATADICT[pulse]["chan"]:
  1542. # FFT of stack
  1543. nd = len(self.DATADICT[pulse][ichan][0][istack])
  1544. XX = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex)
  1545. nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt)
  1546. nu[-1] *= -1
  1547. #nu = self.DATADICT[pulse][ichan]["FFT"]["nu"]
  1548. def freqlabel(x, pos):
  1549. return '%1.0f' %((wstart)*nu[1] + x*nu[1])
  1550. formatter = FuncFormatter(freqlabel)
  1551. canvas.ax1.clear()
  1552. for ipm in range(self.DATADICT["nPulseMoments"]):
  1553. X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1554. XX[ipm,:] = X
  1555. XX = XX*WINDOW
  1556. XX = XX[:,wstart:wend]
  1557. smin = np.min(20.*np.log10(np.abs(XX)))
  1558. smax = np.max(20.*np.log10(np.abs(XX)))
  1559. #if smin != smin:
  1560. smax = -40
  1561. smin = -120
  1562. mn = canvas.ax1.matshow(20.*np.log10(np.abs(XX)), aspect='auto', vmin=smin, vmax=smax) #, norm=LogNorm())
  1563. canvas.ax1.xaxis.set_major_formatter(formatter)
  1564. cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn)
  1565. RX = []
  1566. for ichan in self.DATADICT[pulse]["rchan"]:
  1567. R = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex)
  1568. for ipm in range(self.DATADICT["nPulseMoments"]):
  1569. R[ipm,:] = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1570. RX.append(R[:,wstart:wend])
  1571. XC = Filt.transferFunctionFFT(XX, RX)
  1572. # TODO inverse FFT, but we need to map back to origional matrix size
  1573. #for ichan in self.DATADICT[pulse]["chan"]:
  1574. # for ipm in range(self.DATADICT["nPulseMoments"]):
  1575. # self.DATADICT[pulse][ichan][ipm][istack] = np.fft.irfft(XC[] , nd)
  1576. mc = canvas.ax2.matshow(20.*np.log10(np.abs(XC)), aspect='auto', vmin=smin, vmax=smax) #, norm=LogNorm())
  1577. cb2 = mpl.colorbar.Colorbar(canvas.ax2c, mc)
  1578. cmin = np.min(20.*np.log10(np.abs(XC)))
  1579. cmax = np.max(20.*np.log10(np.abs(XC)))
  1580. canvas.ax2.xaxis.set_major_formatter(formatter)
  1581. #canvas.ax2.colorbar(mn)
  1582. canvas.draw()
  1583. ##############################3
  1584. # TODO inverse FFT to get the damn data back!!!
  1585. # self.progressTrigger.emit(percent)
  1586. # #label = "iFID="+str(iFID) + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1587. self.doneTrigger.emit()
  1588. def findSpikes(self, x, width, threshold, rollOn):
  1589. import scipy.ndimage as im
  1590. spikes = np.zeros( len(x) )
  1591. med = im.median_filter(x, width,mode='nearest')
  1592. std = np.std(x)
  1593. spikes = (np.abs(x-med) > threshold * std)
  1594. return np.array(np.where(spikes[rollOn::])) + rollOn
  1595. # def despike(self, width, threshold, itype, rollOn, win, canvas):
  1596. # from scipy import interpolate
  1597. # """ This was a stab at a despike filter. Better results were achieved using the SmartStack approach
  1598. # """
  1599. # try:
  1600. # canvas.fig.clear()
  1601. # except:
  1602. # pass
  1603. #
  1604. # canvas.ax1 = canvas.fig.add_axes([.125,.1,.725,.8])
  1605. # canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1606. # canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1607. # iFID = 0
  1608. # for pulse in self.DATADICT["PULSES"]:
  1609. # for ipm in range(self.DATADICT["nPulseMoments"]):
  1610. # for istack in self.DATADICT["stacks"]:
  1611. # canvas.ax1.clear()
  1612. # for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1613. # x = self.findSpikes(self.DATADICT[pulse][ichan][ipm][istack], width, threshold, rollOn)
  1614. # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack],
  1615. # label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1616. # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][x], self.DATADICT[pulse][ichan][ipm][istack][x], '.', color='red' , markersize=6 )
  1617. #
  1618. # FIXED = np.zeros(len(x[0]))
  1619. # ii = 0
  1620. # for spike in np.array(x[0]).tolist():
  1621. # f = interpolate.interp1d(np.delete(self.DATADICT[pulse]["TIMES"][spike-win/2:spike+win/2], x[0]-(spike-win/2)), \
  1622. # np.delete(self.DATADICT[pulse][ichan][ipm][istack][spike-win/2:spike+win/2], x[0]-(spike-win/2)), itype)
  1623. # FIXED[ii] = f(self.DATADICT[pulse]["TIMES"][spike])
  1624. # ii += 1
  1625. # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][x[0]] , FIXED, '.', color='black' , markersize=4 )
  1626. # self.DATADICT[pulse][ichan][ipm][istack][x[0]] = FIXED
  1627. #
  1628. # canvas.ax1.legend(prop={'size':6})
  1629. # canvas.draw()
  1630. # percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1631. # self.progressTrigger.emit(percent)
  1632. # iFID += 1
  1633. # self.doneTrigger.emit()
  1634. def designFilter(self, cf, PB, SB, gpass, gstop, ftype, canvas):
  1635. ''' cf is central frequency
  1636. pb is pass band
  1637. sb is stop band
  1638. '''
  1639. TS = (cf) / (.5/self.dt)
  1640. PB = PB / (.5/self.dt) # 1/2 width pass band Muddy Creek
  1641. SB = SB / (.5/self.dt) # 1/2 width stop band Muddy Creek
  1642. # if butterworth
  1643. #[bord, wn] = signal.buttord([TS-PB,TS+PB], [TS-SB,TS+SB], 1e-1, 5.)
  1644. if ftype=="Butterworth":
  1645. [bord, wn] = signal.buttord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop)
  1646. [self.filt_b, self.filt_a] = signal.butter(bord, wn, btype='bandpass', output='ba')
  1647. [self.filt_z, self.filt_p, self.filt_k] = signal.butter(bord, wn, btype='band', output='zpk')
  1648. elif ftype == "Chebychev Type II":
  1649. [bord, wn] = signal.cheb2ord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop)
  1650. [self.filt_b, self.filt_a] = signal.cheby2(bord, gstop, wn, btype='bandpass', output='ba')
  1651. [self.filt_z, self.filt_p, self.filt_k] = signal.cheby2(bord, gstop, wn, btype='band', output='zpk')
  1652. elif ftype == "Elliptic":
  1653. [bord, wn] = signal.ellipord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop)
  1654. [self.filt_b, self.filt_a] = signal.ellip(bord, gpass, gstop, wn, btype='bandpass', output='ba')
  1655. [self.filt_z, self.filt_p, self.filt_k] = signal.ellip(bord, gpass, gstop, wn, btype='band', output='zpk')
  1656. # if cheby2
  1657. impulse = self.mfreqz2(self.filt_b, self.filt_a, canvas)
  1658. self.fe = -5
  1659. for it in range(len(impulse[0])):
  1660. if abs(impulse[1][0][it][0]) >= .1 * gpass:# gpass:
  1661. self.fe = impulse[0][it]
  1662. canvas.draw()
  1663. return [bord, self.fe]
  1664. def downsample(self, truncate, dec, plot, canvas):
  1665. """ Downsamples and truncates the raw signal.
  1666. """
  1667. canvas.reAx2()
  1668. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1669. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1670. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1671. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1672. self.samp /= dec
  1673. self.dt = 1./self.samp
  1674. if truncate:
  1675. itrunc = (int)( 1e-3*truncate*self.samp )
  1676. iFID = 0
  1677. for pulse in self.DATADICT["PULSES"]:
  1678. for ipm in range(self.DATADICT["nPulseMoments"]):
  1679. for istack in self.DATADICT["stacks"]:
  1680. canvas.ax1.clear()
  1681. canvas.ax2.clear()
  1682. for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1683. # trim off indices that don't divide evenly
  1684. ndi = np.shape(self.DATADICT[pulse][ichan][ipm][istack])[0]%dec
  1685. if ndi:
  1686. [self.DATADICT[pulse][ichan][ipm][istack], RSTIMES] = signal.resample(self.DATADICT[pulse][ichan][ipm][istack][0:-ndi],\
  1687. len(self.DATADICT[pulse][ichan][ipm][istack][0:-ndi])//dec,\
  1688. self.DATADICT[pulse]["TIMES"][0:-ndi], window='hamm')
  1689. else:
  1690. [self.DATADICT[pulse][ichan][ipm][istack], RSTIMES] = signal.resample(self.DATADICT[pulse][ichan][ipm][istack],\
  1691. len(self.DATADICT[pulse][ichan][ipm][istack])//dec,\
  1692. self.DATADICT[pulse]["TIMES"], window='hamm')
  1693. if truncate:
  1694. self.DATADICT[pulse][ichan][ipm][istack] = self.DATADICT[pulse][ichan][ipm][istack][0:itrunc]
  1695. RSTIMES = RSTIMES[0:itrunc]
  1696. if plot:
  1697. for ichan in self.DATADICT[pulse]["chan"]:
  1698. canvas.ax2.plot( RSTIMES, 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1699. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1700. for ichan in self.DATADICT[pulse]["rchan"]:
  1701. canvas.ax1.plot( RSTIMES, 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1702. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1703. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  1704. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  1705. canvas.ax2.set_xlabel(r"time [s]", fontsize=8)
  1706. canvas.ax2.set_ylabel(r"signal [nV]", fontsize=8)
  1707. canvas.ax1.legend(prop={'size':6})
  1708. canvas.ax2.legend(prop={'size':6})
  1709. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1710. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1711. canvas.draw()
  1712. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1713. self.progressTrigger.emit(percent)
  1714. iFID += 1
  1715. self.DATADICT[pulse]["TIMES"] = RSTIMES
  1716. #####################################
  1717. # resample pulse data
  1718. for pulse in self.DATADICT["PULSES"]:
  1719. for ipm in range(self.DATADICT["nPulseMoments"]):
  1720. for istack in self.DATADICT["stacks"]:
  1721. ndi = np.shape(self.DATADICT[pulse]["CURRENT"][ipm][istack])[0]%dec
  1722. if ndi:
  1723. [self.DATADICT[pulse]["CURRENT"][ipm][istack], RSPTIMES] = signal.resample(self.DATADICT[pulse]["CURRENT"][ipm][istack][0:-ndi],\
  1724. len(self.DATADICT[pulse]["CURRENT"][ipm][istack][0:-ndi])//dec,\
  1725. self.DATADICT[pulse]["PULSE_TIMES"][0:-ndi], window='hamm')
  1726. else:
  1727. [self.DATADICT[pulse]["CURRENT"][ipm][istack], RSPTIMES] = signal.resample(self.DATADICT[pulse]["CURRENT"][ipm][istack],\
  1728. len(self.DATADICT[pulse]["CURRENT"][ipm][istack])//dec,\
  1729. self.DATADICT[pulse]["PULSE_TIMES"], window='hamm')
  1730. self.DATADICT[pulse]["PULSE_TIMES"] = RSPTIMES
  1731. self.doneTrigger.emit()
  1732. self.updateProcTrigger.emit()
  1733. def computeWindow(self, pulse, band, centre, ftype, canvas=None):
  1734. # Compute window
  1735. nd = len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0]][0][self.DATADICT["stacks"][0]])
  1736. fft1 = np.fft.rfft(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0]][0][self.DATADICT["stacks"][0]])
  1737. freqs = np.fft.fftfreq(nd, self.dt)
  1738. df = freqs[1] - freqs[0]
  1739. N = int((round)(band/df))
  1740. if ftype == "Hamming":
  1741. window = np.hamming(N)
  1742. elif ftype == "Hanning":
  1743. window = np.hanning(N)
  1744. elif ftype == "Rectangular":
  1745. window = np.ones(N)
  1746. elif ftype == "Flat top":
  1747. window = signal.flattop(N)
  1748. else:
  1749. print ("in windowFilter, window type undefined")
  1750. WINDOW = np.zeros(len(fft1))
  1751. ifreq = int(round(centre/df))
  1752. istart = ifreq-len(window)//2
  1753. iend = 0
  1754. if N%2:
  1755. WINDOW[ifreq-N//2:ifreq+N//2+1] = window
  1756. iend = ifreq+N//2+1
  1757. else:
  1758. WINDOW[ifreq-N//2:ifreq+N//2] = window
  1759. iend = ifreq+N//2
  1760. self.WINDOW = WINDOW
  1761. self.iWindowStart = istart
  1762. self.iWindowEnd = iend
  1763. self.FFTtimes = nd
  1764. fft1 = np.fft.irfft(WINDOW)
  1765. # calculate dead time
  1766. self.windead = 0.
  1767. for ift in np.arange(100,0,-1):
  1768. #print( ift, fft1[ift] )
  1769. if fft1[ift] > .001:
  1770. #print ("DEAD TIME", 1e3*self.DATADICT[pulse]["TIMES"][ift] - 1e3*self.DATADICT[pulse]["TIMES"][0] )
  1771. dead = 1e3*self.DATADICT[pulse]["TIMES"][ift] - 1e3*self.DATADICT[pulse]["TIMES"][0]
  1772. self.windead = self.DATADICT[pulse]["TIMES"][ift] - self.DATADICT[pulse]["TIMES"][0]
  1773. break
  1774. if canvas != None:
  1775. canvas.fig.clear()
  1776. canvas.ax1 = canvas.fig.add_axes([.1, .6, .75, .35])
  1777. canvas.ax2 = canvas.fig.add_axes([.1, .1, .75, .35])
  1778. canvas.ax1.plot(WINDOW)
  1779. canvas.ax2.plot( 1e3* self.DATADICT[pulse]["TIMES"][0:100] - 1e3*self.DATADICT[pulse]["TIMES"][0], fft1[0:100] )
  1780. canvas.ax2.set_xlabel("time (ms)")
  1781. canvas.ax2.set_title("IFFT")
  1782. canvas.draw()
  1783. return [WINDOW, nd, istart, iend, dead]
  1784. def windowFilter(self, ftype, band, centre, canvas):
  1785. ###############################
  1786. # Window Filter (Ormsby filter http://www.xsgeo.com/course/filt.htm)
  1787. # apply window
  1788. iFID = 0
  1789. for pulse in self.DATADICT["PULSES"]:
  1790. [WINDOW, nd, istart, iend,dead] = self.computeWindow(pulse, band, centre, ftype)
  1791. for istack in self.DATADICT["stacks"]:
  1792. for ipm in range(self.DATADICT["nPulseMoments"]):
  1793. for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1794. fft = np.fft.rfft( self.DATADICT[pulse][ichan][ipm][istack] )
  1795. fft *= WINDOW
  1796. self.DATADICT[pulse][ichan][ipm][istack] = np.fft.irfft(fft , nd)
  1797. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1798. self.progressTrigger.emit(percent)
  1799. iFID += 1
  1800. self.plotFT(canvas, istart, iend)
  1801. self.doneTrigger.emit()
  1802. def bandpassFilter(self, canvas, blank, plot=True):
  1803. if plot:
  1804. canvas.reAx2()
  1805. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1806. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1807. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1808. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1809. ife = (int)( max(self.fe, self.windead) * self.samp )
  1810. # Data
  1811. iFID = 0
  1812. for pulse in self.DATADICT["PULSES"]:
  1813. self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][ife:-ife]
  1814. for ipm in range(self.DATADICT["nPulseMoments"]):
  1815. for istack in self.DATADICT["stacks"]:
  1816. canvas.ax1.clear()
  1817. canvas.ax2.clear()
  1818. #for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1819. for ichan in self.DATADICT[pulse]["rchan"]:
  1820. # reflect signal back on itself to reduce gibbs effects on early times
  1821. #nr = len( self.DATADICT[pulse][ichan][ipm][istack] ) - 1 + ife
  1822. #refl = np.append( -1*self.DATADICT[pulse][ichan][ipm][istack][::-1][0:-1], self.DATADICT[pulse][ichan][ipm][istack] )
  1823. #reflfilt = signal.filtfilt( self.filt_b, self.filt_a, refl )
  1824. #self.DATADICT[pulse][ichan][ipm][istack] = reflfilt[nr:-ife]
  1825. # don't reflect
  1826. self.DATADICT[pulse][ichan][ipm][istack] = \
  1827. signal.filtfilt(self.filt_b, self.filt_a, self.DATADICT[pulse][ichan][ipm][istack])[ife:-ife]
  1828. # plot
  1829. if plot:
  1830. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1831. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan))
  1832. for ichan in self.DATADICT[pulse]["chan"]:
  1833. # reflect signal back on itself to reduce gibbs effects on early times
  1834. #nr = len( self.DATADICT[pulse][ichan][ipm][istack] ) - 1 + ife
  1835. #refl = np.append( -1*self.DATADICT[pulse][ichan][ipm][istack][::-1][0:-1], self.DATADICT[pulse][ichan][ipm][istack] )
  1836. #reflfilt = signal.filtfilt( self.filt_b, self.filt_a, refl )
  1837. #self.DATADICT[pulse][ichan][ipm][istack] = reflfilt[nr:-ife]
  1838. # don't reflect
  1839. self.DATADICT[pulse][ichan][ipm][istack] = \
  1840. scipy.signal.filtfilt(self.filt_b, self.filt_a, self.DATADICT[pulse][ichan][ipm][istack])[ife:-ife]
  1841. # plot
  1842. if plot:
  1843. canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1844. label = "data " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan))
  1845. if plot:
  1846. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  1847. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  1848. canvas.ax2.set_xlabel(r"time [s]", fontsize=8)
  1849. canvas.ax2.set_ylabel(r"signal [nV]", fontsize=8)
  1850. canvas.ax1.legend(prop={'size':6})
  1851. canvas.ax2.legend(prop={'size':6})
  1852. canvas.draw()
  1853. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1854. self.progressTrigger.emit(percent)
  1855. iFID += 1
  1856. self.doneTrigger.emit()
  1857. self.updateProcTrigger.emit()
  1858. def loadGMRBinaryFID( self, rawfname, istack ):
  1859. """ Reads a single binary GMR file and fills into DATADICT
  1860. """
  1861. #################################################################################
  1862. # figure out key data indices
  1863. # Pulse
  1864. nps = (int)((self.prePulseDelay)*self.samp)
  1865. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  1866. # Data
  1867. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  1868. nd1 = (int)(1.*self.samp) # samples in first pulse
  1869. invGain = 1./self.RxGain
  1870. invCGain = self.CurrentGain
  1871. pulse = "Pulse 1"
  1872. chan = self.DATADICT[pulse]["chan"]
  1873. rchan = self.DATADICT[pulse]["rchan"]
  1874. rawFile = open( rawfname, 'rb')
  1875. for ipm in range(self.nPulseMoments):
  1876. buf1 = rawFile.read(4)
  1877. buf2 = rawFile.read(4)
  1878. N_chan = struct.unpack('>i', buf1 )[0]
  1879. N_samp = struct.unpack('>i', buf2 )[0]
  1880. T = N_samp * self.dt
  1881. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  1882. DATA = np.zeros([N_samp, N_chan+1])
  1883. for ichan in range(N_chan):
  1884. DATADUMP = rawFile.read(4*N_samp)
  1885. for irec in range(N_samp):
  1886. DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0]
  1887. # Save into Data Cube
  1888. for ichan in chan:
  1889. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,eval(ichan)+3][nds:nds+nd1] * invGain
  1890. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  1891. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain
  1892. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  1893. # reference channels?
  1894. for ichan in rchan:
  1895. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,eval(ichan)+3][nds:nds+nd1] * invGain
  1896. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  1897. def loadGMRASCIIFID( self, rawfname, istack ):
  1898. """Based on the geoMRI instrument manufactured by VistaClara. Imports
  1899. a suite of raw .lvm files with the following format (on one line)
  1900. time(s) DC_Bus/100(V) Current+/75(A) Curr-/75(A) Voltage+/200(V) \
  1901. Ch1(V) Ch2(V) Ch3(V) Ch4(V)
  1902. Sampling rate is assumed at 50 kHz
  1903. """
  1904. import pandas as pd
  1905. #################################################################################
  1906. # figure out key data indices
  1907. # Pulse
  1908. nps = (int)((self.prePulseDelay)*self.samp)
  1909. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  1910. # Data
  1911. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  1912. nd1 = (int)(1.*self.samp) - nds # samples in first pulse
  1913. ndr = (int)(1.*self.samp) # samples in record
  1914. invGain = 1./self.RxGain
  1915. invCGain = self.CurrentGain
  1916. pulse = "Pulse 1"
  1917. chan = self.DATADICT[pulse]["chan"]
  1918. rchan = self.DATADICT[pulse]["rchan"]
  1919. T = 1.5 #N_samp * self.dt
  1920. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  1921. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  1922. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  1923. # pandas is much faster than numpy for io
  1924. #DATA = np.loadtxt(rawfname)
  1925. DATA = pd.read_csv(rawfname, header=None, sep="\t").values
  1926. for ipm in range(self.nPulseMoments):
  1927. for ichan in np.append(chan,rchan):
  1928. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][nds:(nds+nd1)] * invGain
  1929. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,2][nps:nps+npul] * invCGain
  1930. nds += ndr
  1931. nps += ndr
  1932. def loadFIDData(self, base, procStacks, chanin, rchanin, FIDProc, canvas, deadTime, plot):
  1933. '''
  1934. Loads a GMR FID dataset, reads binary and ASCII format files
  1935. '''
  1936. canvas.reAx3(True,False)
  1937. chan = []
  1938. for ch in chanin:
  1939. chan.append(str(ch))
  1940. rchan = []
  1941. for ch in rchanin:
  1942. rchan.append(str(ch))
  1943. # not in any headers but this has changed, NOT the place to do this. MOVE
  1944. #self.prePulseDelay = 0.01 # delay before pulse
  1945. self.deadTime = deadTime # instrument dead time before measurement
  1946. self.samp = 50000. # in case this is a reproc, these might have
  1947. self.dt = 1./self.samp # changed
  1948. #################################################################################
  1949. # Data structures
  1950. PULSES = [FIDProc]
  1951. PULSES = ["Pulse 1"]
  1952. self.DATADICT = {}
  1953. self.DATADICT["nPulseMoments"] = self.nPulseMoments
  1954. self.DATADICT["stacks"] = procStacks
  1955. self.DATADICT["PULSES"] = PULSES
  1956. for pulse in PULSES:
  1957. self.DATADICT[pulse] = {}
  1958. self.DATADICT[pulse]["chan"] = chan # TODO these should not be a subet of pulse! for GMR all
  1959. self.DATADICT[pulse]["rchan"] = rchan # data are consistent
  1960. self.DATADICT[pulse]["CURRENT"] = {}
  1961. for ichan in np.append(chan,rchan):
  1962. self.DATADICT[pulse][ichan] = {}
  1963. for ipm in range(self.nPulseMoments):
  1964. self.DATADICT[pulse][ichan][ipm] = {}
  1965. self.DATADICT[pulse]["CURRENT"][ipm] = {}
  1966. for istack in procStacks:
  1967. self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3)
  1968. self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3)
  1969. ##############################################
  1970. # Read in binary (.lvm) data
  1971. iistack = 0
  1972. fnames = []
  1973. for istack in procStacks:
  1974. if self.nDAQVersion < 2.3:
  1975. #rawfname = base + "_" + str(istack)
  1976. self.loadGMRASCIIFID( base + "_" + str(istack), istack )
  1977. else:
  1978. self.loadGMRBinaryFID( base + "_" + str(istack) + ".lvm", istack )
  1979. #fnames.append( base + "_" + str(istack) + ".lvm" )
  1980. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  1981. self.progressTrigger.emit(percent)
  1982. iistack += 1
  1983. # multiprocessing load data
  1984. #info = {}
  1985. #info["prePulseDelay"] = self.prePulseDelay
  1986. #with multiprocessing.Pool() as pool:
  1987. # results = pool.starmap( loadGMRBinaryFID, zip(itertools.repeat(self), fnames, info ) ) # zip(np.tile(vc, (ns, 1)), np.tile(vgc, (ns,1)), itertools.repeat(sys.argv[1]), itertools.repeat(sys.argv[2]), EPS_CMR))
  1988. # Plotting
  1989. if plot:
  1990. iistack = 0
  1991. for istack in procStacks:
  1992. for ipm in range(self.nPulseMoments):
  1993. canvas.ax1.clear()
  1994. canvas.ax2.clear()
  1995. canvas.ax3.clear()
  1996. #canvas.fig.patch.set_facecolor('blue')
  1997. for ichan in chan:
  1998. canvas.ax1.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black')
  1999. canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue')
  2000. for ichan in rchan:
  2001. canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue')
  2002. canvas.ax3.legend(prop={'size':6})
  2003. canvas.ax2.legend(prop={'size':6})
  2004. canvas.ax1.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=8)
  2005. canvas.ax1.set_xlabel("time [s]", fontsize=8)
  2006. canvas.ax1.set_ylabel("Current [A]", fontsize=8)
  2007. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2008. canvas.ax2.set_ylabel("RAW signal [V]", fontsize=8)
  2009. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  2010. canvas.ax2.tick_params(axis='both', which='minor', labelsize=6)
  2011. canvas.ax2.set_xlabel("time [s]", fontsize=8)
  2012. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2013. canvas.ax3.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2014. canvas.draw()
  2015. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  2016. self.progressTrigger.emit(percent)
  2017. iistack += 1
  2018. self.enableDSP()
  2019. self.doneTrigger.emit()
  2020. def load4PhaseT1Data(self, base, procStacks, chan, rchan, FIDProc, canvas, deadTime, plot):
  2021. """
  2022. Designed to load GMR 4-phase data which use the following convention for phase cycles
  2023. P1 P2
  2024. Stack 1 -> 0 0 <-- <--
  2025. Stack 2 -> 0 pi/2 | <-- <--
  2026. Stack 3 -> pi/2 0 <-- | <--
  2027. Stack 4 -> pi/2 pi/2 <-- <--
  2028. The cycle is determined by stack indice. Walbrecker proposes for pulse2 data (Stack2 - Stack1) / 2
  2029. equivalently (Stack 4 - Stack3) will yield the same voltage response wrt. the second pulse.
  2030. Alternatively Stack 4 can be converted to be aligned with Stack 1 by negating, and Stack 3 Can be aligned with Stack 2 by negating
  2031. Then there are just the two phase cycles that can be stacked like normal.
  2032. Unfortunately, we need to stack each cycle first, then perform corrections for phase cycling. The reason for this is that otherwise,
  2033. the entire point is lost, as the signal that is desired to be cancelled out may not be balanced evenly across the stacks. That is to say,
  2034. if there is an uneven number of a certain phase cycle.
  2035. We could, I suppose impose this condition, but I think I would rather not?
  2036. + more samples for std. deviation calculation
  2037. + single spikes will have less residual effect
  2038. - can no longer do normality tests etc. and remove data that are suspect.
  2039. - requires a dumb stack, and may also require removal of entire stacks of data
  2040. Additonally, the GMR varies phase as a function of pulse moment index, so that the first pusle moment is zero phase, the second is pi/2 the third is zero ...
  2041. This however, is altered by the above convention. It gets a little complicated...
  2042. """
  2043. import struct
  2044. canvas.reAx2()
  2045. # not in any headers but this has changed, NOT the place to do this. MOVE
  2046. self.prePulseDelay = 0.01 # delay before pulse
  2047. self.deadTime = deadTime # instrument dead time before measurement
  2048. self.samp = 50000. # in case this is a reproc, these might have
  2049. self.dt = 1./self.samp # changed
  2050. invGain = 1./self.RxGain
  2051. invCGain = self.CurrentGain
  2052. #################################################################################
  2053. # figure out key data indices
  2054. # Pulse
  2055. nps = (int)((self.prePulseDelay)*self.samp)
  2056. nps2 = (int)((self.prePulseDelay+self.interpulseDelay)*self.samp)
  2057. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  2058. np2 = (int)(self.pulseLength[1]*self.samp) #+ 100
  2059. # Data
  2060. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  2061. nd1 = (int)((self.interpulseDelay)*self.samp) # samples in first pulse
  2062. nd2s = nps+npul+nd1+(int)((self.deadTime)*self.samp); # indice pulse 2 data starts
  2063. nd2 = (int)((1.)*self.samp) # samples in first pulse
  2064. nd1 -= (int)((.028)*self.samp) + nps # some time to get ready for next pulse
  2065. #################################################################################
  2066. # Data structures
  2067. PULSES = [FIDProc]
  2068. if FIDProc == "Both":
  2069. PULSES = ["Pulse 1","Pulse 2"]
  2070. self.DATADICT = {}
  2071. self.DATADICT["nPulseMoments"] = self.nPulseMoments
  2072. self.DATADICT["stacks"] = procStacks
  2073. self.DATADICT["PULSES"] = PULSES
  2074. for pulse in PULSES:
  2075. self.DATADICT[pulse] = {}
  2076. self.DATADICT[pulse]["chan"] = chan
  2077. self.DATADICT[pulse]["rchan"] = rchan
  2078. self.DATADICT[pulse]["CURRENT"] = {}
  2079. for ichan in np.append(chan,rchan):
  2080. self.DATADICT[pulse][ichan] = {}
  2081. for ipm in range(self.nPulseMoments):
  2082. self.DATADICT[pulse][ichan][ipm] = {}
  2083. self.DATADICT[pulse]["CURRENT"][ipm] = {}
  2084. for istack in procStacks:
  2085. self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3)
  2086. self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3)
  2087. ##############################################
  2088. # Read in binary data
  2089. iistack = 0
  2090. for istack in procStacks:
  2091. rawFile = open(base + "_" + str(istack) + ".lvm", 'rb')
  2092. for ipm in range(self.nPulseMoments):
  2093. N_chan = struct.unpack('>i', rawFile.read(4))[0]
  2094. N_samp = struct.unpack('>i', rawFile.read(4))[0]
  2095. T = N_samp * self.dt
  2096. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  2097. DATA = np.zeros([N_samp, N_chan+1])
  2098. for ichan in range(N_chan):
  2099. DATADUMP = rawFile.read(4*N_samp)
  2100. for irec in range(N_samp):
  2101. DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0]
  2102. if plot:
  2103. canvas.ax1.clear()
  2104. canvas.ax2.clear()
  2105. li = np.shape( DATA[:,4][nd2s:nd2s+nd2] )[0]
  2106. ######################################
  2107. # save into DATA cube
  2108. # TODO, changing iFID to 'Pulse 1' or 'Pulse 2'
  2109. for ichan in chan:
  2110. if FIDProc == "Pulse 1":
  2111. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2112. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2113. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain
  2114. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  2115. if plot:
  2116. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue')
  2117. canvas.ax2.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black')
  2118. elif FIDProc == "Pulse 2":
  2119. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] *invGain
  2120. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2121. self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] = DATA[:,1][nps2:nps2+np2] * invCGain
  2122. self.DATADICT["Pulse 2"]["PULSE_TIMES"] = TIMES[nps2:nps2+np2]
  2123. if plot:
  2124. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID data ch. "+str(ichan)) #, color='blue')
  2125. canvas.ax2.plot( self.DATADICT["Pulse 2"]["PULSE_TIMES"], self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack], color='black' )
  2126. else:
  2127. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2128. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain
  2129. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2130. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2131. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain
  2132. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  2133. self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] = DATA[:,1][nps2:nps2+np2] * invCGain
  2134. self.DATADICT["Pulse 2"]["PULSE_TIMES"] = TIMES[nps2:nps2+np2]
  2135. if plot:
  2136. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue')
  2137. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID data ch. "+str(ichan)) #, color='blue')
  2138. canvas.ax2.plot( self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black' )
  2139. canvas.ax2.plot( self.DATADICT["Pulse 2"]["PULSE_TIMES"], self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] , color='black')
  2140. for ichan in rchan:
  2141. if FIDProc == "Pulse 1":
  2142. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2143. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2144. if plot:
  2145. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue')
  2146. elif FIDProc == "Pulse 2":
  2147. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain
  2148. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2149. if plot:
  2150. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID ref ch. "+str(ichan)) #, color='blue')
  2151. else:
  2152. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2153. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain
  2154. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2155. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2156. if plot:
  2157. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue')
  2158. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID ref ch. "+str(ichan)) #, color='blue')
  2159. if plot:
  2160. canvas.ax1.legend(prop={'size':6})
  2161. canvas.ax1.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=8)
  2162. canvas.ax1.set_xlabel("time [s]", fontsize=8)
  2163. canvas.ax1.set_ylabel("RAW signal [V]", fontsize=8)
  2164. canvas.ax2.set_ylabel("Current [A]", fontsize=8)
  2165. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  2166. canvas.ax2.tick_params(axis='both', which='minor', labelsize=6)
  2167. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2168. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2169. canvas.draw()
  2170. # update GUI of where we are
  2171. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  2172. self.progressTrigger.emit(percent)
  2173. iistack += 1
  2174. self.enableDSP()
  2175. self.doneTrigger.emit()
  2176. if __name__ == "__main__":
  2177. if len(sys.argv) < 4:
  2178. print( "mrsurvey path/to/header <stack1> <stackN> ")
  2179. exit()
  2180. GMR = GMRDataProcessor()
  2181. GMR.readHeaderFile(sys.argv[1])
  2182. GMR.Print()
  2183. if GMR.pulseType == "FID":
  2184. GMR.loadFIDData(sys.argv[1], sys.argv[2], sys.argv[3], 5)
  2185. if GMR.pulseType == "4PhaseT1":
  2186. GMR.load4PhaseT1Data(sys.argv[1], sys.argv[2], sys.argv[3], 5)
  2187. pylab.show()