Surface NMR processing and inversion GUI
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

decay.py 6.1KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. import numpy, array #,rpy2
  2. from matplotlib import pyplot as plt
  3. import numpy as np
  4. from scipy.optimize import least_squares
  5. #from rpy2.robjects.packages import importr
  6. #import rpy2.robjects as robjects
  7. #import rpy2.robjects.numpy2ri
  8. #import notch
  9. from numpy.fft import fft, fftfreq
  10. # We know/can calculate frequency peak, use this to guess where picks will be.
  11. # maybe have a sliding window that reports peak values.
  12. def peakPicker(data, omega, dt):
  13. # compute window based on omega and dt
  14. # make sure you are not aliased, grab every other peak
  15. window = (2*numpy.pi) / (omega*dt)
  16. data = numpy.array(data)
  17. peaks = []
  18. troughs = []
  19. times = []
  20. times2 = []
  21. indices = []
  22. ws = 0
  23. we = window
  24. ii = 0
  25. for i in range((int)(len(data)/window)):
  26. # initially was just returning this I think avg is better
  27. #times.append( (ws + numpy.abs(data[ws:we]).argmax()) * dt )
  28. peaks.append(numpy.max(data[ws:we]))
  29. times.append( (ws + data[ws:we].argmax()) * dt )
  30. indices.append( ii + data[ws:we].argmax() )
  31. troughs.append(numpy.min(data[ws:we]))
  32. times2.append( (ws + (data[ws:we]).argmin()) * dt )
  33. indices.append( ii + data[ws:we].argmin() )
  34. ws += window
  35. we += window
  36. ii += (int)(we-ws)
  37. #return numpy.array(peaks), numpy.array(times)
  38. # Averaging peaks does a good job of removing bias in noise
  39. return (numpy.array(peaks)-numpy.array(troughs))/2., \
  40. (numpy.array(times)+numpy.array(times2))/2., \
  41. indices
  42. def fun(x, t, y):
  43. """ Cost function for regression, single exponential, no DC term
  44. x[0] = A0
  45. x[1] = zeta
  46. x[2] = df
  47. x[3] = T2
  48. """
  49. # concatenated real and imaginary parts
  50. return y - np.concatenate((-x[0]*np.sin(2.*np.pi*x[2]*t + x[1])*np.exp(-t/x[3]), \
  51. +x[0]*np.cos(2.*np.pi*x[2]*t + x[1])*np.exp(-t/x[3])))
  52. def fun2(x, t, y):
  53. """ Cost function for regression, single exponential, no DC term
  54. x[0] = A0
  55. x[1] = zeta
  56. x[2] = T2
  57. """
  58. # concatenated real and imaginary parts
  59. pre = np.concatenate((x[0]*np.cos(x[1])*np.exp(-t/x[2]), \
  60. -x[0]*np.sin(x[1])*np.exp(-t/x[2])))
  61. return y-pre
  62. def quadratureDetect2(X, Y, tt, method, loss, x0="None"):
  63. """ Pure python quadrature detection using Scipy.
  64. X = real part of NMR signal
  65. Y = imaginary component of NMR signal
  66. tt = time
  67. """
  68. #method = ['trf','dogbox','lm'][method_int]
  69. #loss = ['linear','soft_l1','cauchy','huber'][loss_int]
  70. #print ("method", method, 'loss', loss)
  71. if x0=="None":
  72. if method == 'lm':
  73. x0 = np.array( [50., 0., 0., .200] ) # A0, zeta, df, T2
  74. res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\
  75. method=method
  76. )
  77. else:
  78. x0 = np.array( [50., 0., 0., .200] ) # A0, zeta, df, T2
  79. res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\
  80. bounds=( [1, -np.pi, -10, .01] , [500., np.pi, 10, .800] ),
  81. method=method
  82. )
  83. x = res_lsq.x
  84. #print ("A0={} zeta={} df={} T2={}".format(x[0],x[1],x[2],x[3]))
  85. else:
  86. res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\
  87. #bounds=( [1., -np.pi, -5, .005] , [1000., np.pi, 5, .800] ),
  88. method=method
  89. )
  90. #bounds=( [0., 0, -20, .0] , [1., np.pi, 20, .6] ))
  91. x = res_lsq.x
  92. return res_lsq.success, x[0], x[2], x[1], x[3]
  93. # no df
  94. #x = np.array( [1., 0., 0.2] )
  95. #res_lsq = least_squares(fun2, x, args=(tt, np.concatenate((X, Y))), loss='soft_l1', f_scale=0.1)
  96. #x = res_lsq.x
  97. #return conv, E0,df,phi,T2
  98. #return res_lsq.success, x[0], 0, x[1], x[2]
  99. ###################################################################
  100. ###################################################################
  101. ###################################################################
  102. if __name__ == "__main__":
  103. dt = .0001
  104. T2 = .1
  105. omega = 2000.*2*numpy.pi
  106. phi = .0
  107. T = 8.*T2
  108. t = numpy.arange(0, T, dt)
  109. # Synthetic data, simple single decaying sinusoid
  110. # with a single decay parameter and gaussian noise added
  111. data = numpy.exp(-t/T2) * numpy.sin(omega * t + phi) + numpy.random.normal(0,.05,len(t)) \
  112. + numpy.random.randint(-1,2,len(t))*numpy.random.exponential(.2,len(t))
  113. cdata = numpy.exp(-t/T2) * numpy.sin(omega * t + phi) #+ numpy.random.normal(0,.25,len(t))
  114. #data = numpy.random.normal(0,.25,len(t))
  115. sigma2 = numpy.std(data[::-len(data)/4])
  116. #sigma2 = numpy.var(data[::-len(data)/4])
  117. print("sigma2", sigma2)
  118. [peaks,times,indices] = peakPicker(data, omega, dt)
  119. [b1,b2,rT2] = regressCurve(peaks,times)
  120. print("rT2 nonweighted", rT2)
  121. [b1,b2,rT2] = regressCurve(peaks,times,sigma2)
  122. print("rT2 weighted", rT2)
  123. envelope = numpy.exp(-t/T2)
  124. renvelope = numpy.exp(-t/rT2)
  125. #outf = file('regress.txt','w')
  126. #for i in range(len(times)):
  127. # outf.write(str(times[i]) + " " + str(peaks[i]) + "\n")
  128. #outf.close()
  129. plt.plot(t,data, 'b')
  130. plt.plot(t,cdata, 'g', linewidth=1)
  131. plt.plot(t,envelope, color='violet', linewidth=4)
  132. plt.plot(t,renvelope, 'r', linewidth=4)
  133. plt.plot(times, numpy.array(peaks), 'bo', markersize=8, alpha=.25)
  134. plt.legend(['noisy data','clean data','real envelope','regressed env','picks'])
  135. plt.savefig("regression.pdf")
  136. # FFT check
  137. fourier = fft(data)
  138. plt.figure()
  139. freq = fftfreq(len(data), d=dt)
  140. plt.plot(freq, (fourier.real))
  141. plt.show()
  142. # TODO do a bunch in batch mode to see if T2 estimate is better with or without
  143. # weighting and which model is best.
  144. # TODO try with real data
  145. # TODO test filters (median, FFT, notch)
  146. # It looks like weighting is good for relatively low sigma, but for noisy data
  147. # it hurts us. Check