123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from ruamel import yaml
- import os, sys
- import numpy as np
-
- import matplotlib.pyplot as plt
-
- import seaborn as sns
- sns.set(style="ticks")
-
- import cmocean
- from SEGPlot import *
- from matplotlib.ticker import FormatStrFormatter
- import matplotlib.ticker as plticker
-
- def slicedict(d, s):
- return {k:v for k,v in d.items() if k.startswith(s)}
-
- # Converts Lemma/Merlin/Akvo serialized Eigen arrays into numpy ones for use by Python
- class VectorXr(yaml.YAMLObject):
- """
- Converts Lemma/Merlin/Akvo serialized Eigen arrays into numpy ones for use by Python
- """
- yaml_tag = u'VectorXr'
- def __init__(self, array):
- self.size = np.shape(array)[0]
- self.data = array.tolist()
- def __repr__(self):
- # Converts to numpy array on import
- return "np.array(%r)" % (self.data)
-
- class AkvoData(yaml.YAMLObject):
- """
- Reads an Akvo serialized dataset into a standard python dictionary
- """
- yaml_tag = u'AkvoData'
- def __init__(self, array):
- pass
- #self.size = np.shape(array)[0]
- #self.Imp = array.tolist()
- def __repr__(self):
- # Converts to a dictionary with Eigen vectors represented as Numpy arrays
- return self
-
- def loadAkvoData(fnamein):
- """ Loads data from an Akvo YAML file. The 0.02 is hard coded as the pulse length. This needs to be
- corrected in future kernel calculations. The current was reported but not the pulse length.
- """
- fname = (os.path.splitext(fnamein)[0])
- with open(fnamein, 'r') as stream:
- try:
- AKVO = (yaml.load(stream, Loader=yaml.Loader))
- except yaml.YAMLError as exc:
- print(exc)
- return AKVO
-
- def plotQt( akvo ):
- plt.style.use('ggplot')
- #plt.style.use('seaborn-white')
- for pulse in akvo.Gated:
- if pulse[0:5] == "Pulse":
- #print(akvo.GATED[pulse].keys())
- nq = akvo.Pulses[pulse]["current"].size
- for chan in slicedict(akvo.Gated[pulse], "Chan."):
- # accumulate pulse moments
- CA = np.zeros( (nq, len( akvo.Gated[pulse]["abscissa"].data )) )
- RE = np.zeros( (nq, len( akvo.Gated[pulse]["abscissa"].data )) )
- IM = np.zeros( (nq, len( akvo.Gated[pulse]["abscissa"].data )) )
- for q in range(nq):
- #plt.plot( akvo.Gated[pulse]["abscissa"].data, akvo.Gated[pulse][chan]["Q-" + str(q)+" CA"].data )
- CA[q] = akvo.Gated[pulse][chan]["Q-" + str(q)+" CA"].data
- RE[q] = akvo.Gated[pulse][chan]["Q-" + str(q)+" RE"].data
- IM[q] = akvo.Gated[pulse][chan]["Q-" + str(q)+" IM"].data
- #X[q] = akvo.Gated[pulse][chan]["Q-" + str(q)+" RE"].data
- Windows = akvo.Gated[pulse]["windows"].data
- Centres = akvo.Gated[pulse]["abscissa"].data
-
-
- Q = np.array(akvo.Pulses[pulse]["current"].data)
- print("pulse length ", akvo.pulseLength[0])
- Q *= akvo.pulseLength[0]
-
- fig = plt.figure( figsize=( pc2in(20), pc2in(26) ) )
- ax1 = fig.add_axes([.25,.05,.6,.9])
- #im = ax1.pcolormesh(Windows, Q, CA, cmap=cmocean.cm.curl_r, vmin=-np.max(np.abs(CA)), vmax=(np.max(np.abs(CA))))
- im = ax1.pcolormesh(Centres, Q, CA, cmap=cmocean.cm.curl_r, vmin=-np.max(np.abs(CA)), vmax=(np.max(np.abs(CA))))
- cb = plt.colorbar( im, orientation='horizontal', pad=.175, )
- cb.set_label("FID (nV)", fontsize=10)
- cb.ax.tick_params(labelsize=10)
- ax1.set_yscale('log')
- ax1.set_ylabel("Q (A$\cdot$s)", fontsize=10)
- ax1.set_xscale('log')
- ax1.set_xlabel("time (s)", fontsize=10)
-
- #loc = plticker.MultipleLocator(25) #base=50.0) # this locator puts ticks at regular intervals
- #loc = plticker.MaxNLocator(5, steps=[1,2]) #base=50.0) # this locator puts ticks at regular intervals
- #ax1.xaxis.set_major_locator(loc)
-
- #ax1.xaxis.set_minor_locator(plticker.NullLocator())
- ax1.xaxis.set_major_formatter(FormatStrFormatter('%2.0f'))
- ax1.yaxis.set_major_formatter(FormatStrFormatter('%2.1f'))
-
- #plt.figure()
- #sns.kdeplot(Windows, Q, CA) #, kind="hex", color="#4CB391")
- #sns.heatmap(CA, annot=False, center=0)
-
- #plt.matshow(RE)
- #plt.matshow(IM)
- plt.savefig("data.pgf")
- plt.savefig("data.png", dpi=300)
- plt.show()
-
- if __name__ == "__main__":
- akvo = loadAkvoData( sys.argv[1] ) #, "Chan. 1")
- plotQt(akvo)
|