|
@@ -234,13 +234,13 @@ def main():
|
234
|
234
|
mmax = np.max(np.abs(VV))
|
235
|
235
|
mmin = np.min(VV)
|
236
|
236
|
|
237
|
|
- obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='nearest')
|
|
237
|
+ obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='auto')
|
238
|
238
|
ax1.set_title("observed")
|
239
|
239
|
|
240
|
240
|
pre = np.dot(KQT[ich*ntq:(ich+1)*ntq,:], inv)
|
241
|
241
|
|
242
|
242
|
PRE = np.reshape( pre, np.shape(VV) )
|
243
|
|
- prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax,shading='nearest' )
|
|
243
|
+ prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax,shading='auto' )
|
244
|
244
|
ax2.set_title("predicted")
|
245
|
245
|
|
246
|
246
|
cbar = plt.colorbar(prem, axc1)
|
|
@@ -250,7 +250,7 @@ def main():
|
250
|
250
|
|
251
|
251
|
DIFF = (PRE-VV) / VVS
|
252
|
252
|
md = np.max(np.abs(DIFF))
|
253
|
|
- dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='nearest')
|
|
253
|
+ dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='auto')
|
254
|
254
|
ax3.set_title("misfit / $\widehat{\sigma}$")
|
255
|
255
|
|
256
|
256
|
cbar2 = plt.colorbar(dim, axc2)
|
|
@@ -260,6 +260,7 @@ def main():
|
260
|
260
|
|
261
|
261
|
|
262
|
262
|
figx.suptitle(ch + " linear Inversion")
|
|
263
|
+ plt.savefig(ch + "dataspace.pdf")
|
263
|
264
|
|
264
|
265
|
ich += 1
|
265
|
266
|
|
|
@@ -357,14 +358,14 @@ def main():
|
357
|
358
|
mmax = np.max(np.abs(VV))
|
358
|
359
|
mmin = np.min(VV)
|
359
|
360
|
|
360
|
|
- obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='nearest')
|
|
361
|
+ obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='auto')
|
361
|
362
|
ax1.set_title("observed")
|
362
|
363
|
|
363
|
364
|
|
364
|
365
|
pre = np.abs(np.dot(KQTc[ich*ntq:(ich+1)*ntq,:], inv))
|
365
|
366
|
|
366
|
367
|
PRE = np.reshape( pre, np.shape(VV) )
|
367
|
|
- prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='nearest' )
|
|
368
|
+ prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='auto' )
|
368
|
369
|
ax2.set_title("predicted")
|
369
|
370
|
|
370
|
371
|
cbar = plt.colorbar(prem, axc1)
|
|
@@ -374,7 +375,7 @@ def main():
|
374
|
375
|
|
375
|
376
|
DIFF = (PRE-VV) / VVS
|
376
|
377
|
md = np.max(np.abs(DIFF))
|
377
|
|
- dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='nearest')
|
|
378
|
+ dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='auto')
|
378
|
379
|
ax3.set_title("misfit / $\widehat{\sigma}$")
|
379
|
380
|
|
380
|
381
|
cbar2 = plt.colorbar(dim, axc2)
|
|
@@ -384,6 +385,8 @@ def main():
|
384
|
385
|
|
385
|
386
|
|
386
|
387
|
figx.suptitle(ch + " non-linear Inversion")
|
|
388
|
+
|
|
389
|
+ plt.savefig(ch + "_NLdataspace.pdf")
|
387
|
390
|
|
388
|
391
|
ich += 1
|
389
|
392
|
|
|
@@ -474,7 +477,7 @@ def main():
|
474
|
477
|
ax1.set_xlim( ifaces[0], ifaces[-1] )
|
475
|
478
|
ax1.set_xlabel(u"depth (m)")
|
476
|
479
|
ax1.set_ylabel(u"depth (m)")
|
477
|
|
-
|
|
480
|
+ plt.savefig("resolutionmatrix.pdf")
|
478
|
481
|
pdf.close()
|
479
|
482
|
|
480
|
483
|
INV = np.reshape(inv, (len(ifaces)-1,cont["T2Bins"]["number"]) )
|