|
@@ -4,48 +4,7 @@ from scipy.optimize import minimize
|
4
|
4
|
from scipy.linalg import lstsq as sclstsq
|
5
|
5
|
import scipy.linalg as lin
|
6
|
6
|
|
7
|
|
-def harmonic2 ( f1, f2, sN, fs, nK, t ):
|
8
|
|
- """
|
9
|
|
- Performs inverse calculation of two harmonics contaminating a signal.
|
10
|
|
- Args:
|
11
|
|
- f01 = base frequency of the first sinusoidal noise
|
12
|
|
- f02 = base frequency of the second sinusoidal noise
|
13
|
|
- sN = signal containing noise
|
14
|
|
- fs = sampling frequency
|
15
|
|
- nK = number of harmonics to calculate
|
16
|
|
- t = time samples
|
17
|
|
- """
|
18
|
|
- print("building matrix 2")
|
19
|
|
- A = np.zeros( (len(t), 4*nK) )
|
20
|
|
- #f1 = f1MHz * 1e-3
|
21
|
|
- #f2 = f2MHz * 1e-3
|
22
|
|
- for irow, tt in enumerate(t):
|
23
|
|
- A[irow, 0:2*nK:2] = np.cos( np.arange(nK)*2*np.pi*(f1/fs)*irow )
|
24
|
|
- A[irow, 1:2*nK:2] = np.sin( np.arange(nK)*2*np.pi*(f1/fs)*irow )
|
25
|
|
- A[irow, 2*nK::2] = np.cos( np.arange(nK)*2*np.pi*(f2/fs)*irow )
|
26
|
|
- A[irow, 2*nK+1::2] = np.sin( np.arange(nK)*2*np.pi*(f2/fs)*irow )
|
27
|
|
-
|
28
|
|
- v = np.linalg.lstsq(A, sN, rcond=1e-8)
|
29
|
|
- #v = sclstsq(A, sN) #, rcond=1e-6)
|
30
|
|
-
|
31
|
|
- alpha = v[0][0:2*nK:2] + 1e-16
|
32
|
|
- beta = v[0][1:2*nK:2] + 1e-16
|
33
|
|
- amp = np.sqrt( alpha**2 + beta**2 )
|
34
|
|
- phase = np.arctan(- beta/alpha)
|
35
|
|
-
|
36
|
|
- alpha2 = v[0][2*nK::2] + 1e-16
|
37
|
|
- beta2 = v[0][2*nK+1::2] + 1e-16
|
38
|
|
- amp2 = np.sqrt( alpha2**2 + beta2**2 )
|
39
|
|
- phase2 = np.arctan(- beta2/alpha2)
|
40
|
|
-
|
41
|
|
- h = np.zeros(len(t))
|
42
|
|
- for ik in range(nK):
|
43
|
|
- h += np.sqrt( alpha[ik]**2 + beta[ik]**2) * np.cos( 2.*np.pi*ik * (f1/fs) * np.arange(0, len(t), 1 ) + phase[ik] ) \
|
44
|
|
- + np.sqrt(alpha2[ik]**2 + beta2[ik]**2) * np.cos( 2.*np.pi*ik * (f2/fs) * np.arange(0, len(t), 1 ) + phase2[ik] )
|
45
|
|
-
|
46
|
|
- return sN-h
|
47
|
|
-
|
48
|
|
-def harmonic ( f0, sN, fs, nK, t ):
|
|
7
|
+def harmonicEuler ( f0, sN, fs, nK, t ):
|
49
|
8
|
"""
|
50
|
9
|
Performs inverse calculation of harmonics contaminating a signal.
|
51
|
10
|
Args:
|
|
@@ -55,85 +14,56 @@ def harmonic ( f0, sN, fs, nK, t ):
|
55
|
14
|
nK = number of harmonics to calculate
|
56
|
15
|
t = time samples
|
57
|
16
|
"""
|
58
|
|
- print("building matrix ")
|
59
|
|
- A = np.zeros( (len(t), 2*nK) )
|
60
|
|
- for irow, tt in enumerate(t):
|
61
|
|
- A[irow, 0::2] = np.cos( np.arange(nK)*2*np.pi*(f0/fs)*irow )
|
62
|
|
- A[irow, 1::2] = np.sin( np.arange(nK)*2*np.pi*(f0/fs)*irow )
|
63
|
|
-
|
64
|
|
- v = np.linalg.lstsq(A, sN, rcond=1e-16) # rcond=None) #, rcond=1e-8)
|
65
|
|
- #v = sclstsq(A, sN) #, rcond=1e-6)
|
66
|
|
- alpha = v[0][0::2]
|
67
|
|
- beta = v[0][1::2]
|
68
|
17
|
|
69
|
|
- #print("Solving A A.T")
|
70
|
|
- #v = lin.solve(np.dot(A,A.T).T, sN) #, rcond=1e-6)
|
71
|
|
- #v = np.dot(A.T, v)
|
72
|
|
- #v = np.dot(np.linalg.inv(np.dot(A.T, A)), np.dot(A.T, sN))
|
73
|
|
- #alpha = v[0::2]
|
74
|
|
- #beta = v[1::2]
|
|
18
|
+ A = np.exp(1j* np.tile( np.arange(1,nK+1),(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(len(t)),(nK,1)).T )
|
75
|
19
|
|
76
|
|
- amp = np.sqrt( alpha**2 + beta**2 )
|
77
|
|
- phase = np.arctan(- beta/alpha)
|
|
20
|
+ v = np.linalg.lstsq(A, sN, rcond=None)
|
|
21
|
+ alpha = np.real(v[0])
|
|
22
|
+ beta = np.imag(v[0])
|
78
|
23
|
|
79
|
|
- #print("amp:", amp, " phase", phase)
|
|
24
|
+ amp = np.abs(v[0])
|
|
25
|
+ phase = np.angle(v[0])
|
80
|
26
|
|
81
|
27
|
h = np.zeros(len(t))
|
82
|
28
|
for ik in range(nK):
|
83
|
|
- h += np.sqrt(alpha[ik]**2 + beta[ik]**2) * np.cos( 2.*np.pi*ik * (f0/fs) * np.arange(0, len(t), 1 ) + phase[ik] )
|
84
|
|
-
|
85
|
|
- #plt.matshow(A, aspect='auto')
|
86
|
|
- #plt.colorbar()
|
87
|
|
-
|
88
|
|
- #plt.figure()
|
89
|
|
- #plt.plot(alpha)
|
90
|
|
- #plt.plot(beta)
|
91
|
|
- #plt.plot(amp)
|
92
|
|
-
|
93
|
|
- #plt.figure()
|
94
|
|
- #plt.plot(h)
|
95
|
|
- #plt.title("modelled noise")
|
|
29
|
+ h += 2*amp[ik] * np.cos( 2.*np.pi*(ik+1) * (f0/fs) * np.arange(0, len(t), 1 ) + phase[ik] )
|
|
30
|
+
|
96
|
31
|
return sN-h
|
|
32
|
+
|
|
33
|
+ res = sN-h # residual
|
97
|
34
|
|
98
|
|
-
|
99
|
|
-def harmonicEuler ( f0, sN, fs, nK, t ):
|
100
|
|
- """
|
101
|
|
- Performs inverse calculation of harmonics contaminating a signal.
|
102
|
|
- Args:
|
103
|
|
- f0 = base frequency of the sinusoidal noise
|
104
|
|
- sN = signal containing noise
|
105
|
|
- fs = sampling frequency
|
106
|
|
- nK = number of harmonics to calculate
|
107
|
|
- t = time samples
|
108
|
|
- """
|
|
35
|
+ # calculate jacobian
|
|
36
|
+ #J = jacEuler(f0, sN, fs, nK, t)
|
|
37
|
+ #plt.matshow(np.real(J), aspect='auto')
|
109
|
38
|
|
110
|
|
- #print("building Euler matrix ")
|
111
|
|
- #A = np.zeros( (len(t), nK), dtype=np.complex64)
|
112
|
|
- #for irow, tt in enumerate(t):
|
113
|
|
- # A[irow,:] = np.exp(1j* np.arange(1,nK+1) * 2*np.pi* (f0/fs) * irow)
|
|
39
|
+ #Jv = J * np.tile(v[0], (len(t) ,1))
|
|
40
|
+ #plt.matshow(np.real(Jv), aspect='auto')
|
114
|
41
|
|
115
|
|
- #AA = np.zeros( (len(t), nK), dtype=np.complex64)
|
116
|
|
- A = np.exp(1j* np.tile( np.arange(1,nK+1),(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(len(t)),(nK,1)).T )
|
117
|
|
- #AA = np.tile(np.arange(len(t)), (nK,1)).T
|
|
42
|
+ #print ("shape J", np.shape(J))
|
|
43
|
+ #print ("shape v", np.shape(v[0]))
|
|
44
|
+ #print ("shape Jv", np.shape(Jv))
|
118
|
45
|
|
119
|
|
- #plt.matshow( np.imag(A), aspect='auto' )
|
120
|
|
- #plt.matshow( np.real(AA), aspect='auto' )
|
|
46
|
+ #plt.figure()
|
|
47
|
+ #plt.plot(v[0])
|
|
48
|
+ #plt.figure()
|
|
49
|
+ #plt.plot(Jv)
|
121
|
50
|
#plt.show()
|
122
|
51
|
#exit()
|
123
|
|
- #print ("A norm", np.linalg.norm(A - AA))
|
124
|
52
|
|
125
|
|
- v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8)
|
126
|
|
- alpha = np.real(v[0]) #[0::2]
|
127
|
|
- beta = np.imag(v[0]) #[1::2]
|
|
53
|
+ #jac = np.linalg.norm( np.dot(Jv.T, res))
|
|
54
|
+ #print("norm ||", jac , "||", " at freq", f0)
|
128
|
55
|
|
129
|
|
- amp = np.abs(v[0]) #np.sqrt( alpha**2 + beta**2 )
|
130
|
|
- phase = np.angle(v[0]) # np.arctan(- beta/alpha)
|
|
56
|
+ #return res, jac
|
131
|
57
|
|
132
|
|
- h = np.zeros(len(t))
|
133
|
|
- for ik in range(nK):
|
134
|
|
- h += 2*amp[ik] * np.cos( 2.*np.pi*(ik+1) * (f0/fs) * np.arange(0, len(t), 1 ) + phase[ik] )
|
135
|
58
|
|
136
|
|
- return sN-h
|
|
59
|
+def jacEuler( f0, sN, fs, nK, t):
|
|
60
|
+ print("building Jacobian matrix ")
|
|
61
|
+ J = np.zeros( (len(t), nK), dtype=np.complex64 )
|
|
62
|
+ for it, tt in enumerate(t):
|
|
63
|
+ for ik, k in enumerate( np.arange(0, nK) ):
|
|
64
|
+ c = 1j*2.*np.pi*(ik+1.)
|
|
65
|
+ J[it, ik] = (c*np.exp(it*c*f0/fs)) / fs
|
|
66
|
+ return J
|
137
|
67
|
|
138
|
68
|
def harmonicEuler2 ( f0, f1, sN, fs, nK, t ):
|
139
|
69
|
"""
|
|
@@ -145,14 +75,12 @@ def harmonicEuler2 ( f0, f1, sN, fs, nK, t ):
|
145
|
75
|
nK = number of harmonics to calculate
|
146
|
76
|
t = time samples
|
147
|
77
|
"""
|
148
|
|
- print("building Euler matrix 2 ")
|
149
|
|
- A = np.zeros( (len(t), 2*nK), dtype=np.complex64)
|
150
|
|
- for irow, tt in enumerate(t):
|
151
|
|
- A[irow,0:nK] = np.exp( 1j* np.arange(1,nK+1)*2*np.pi*(f0/fs)*irow )
|
152
|
|
- A[irow,nK:2*nK] = np.exp( 1j* np.arange(1,nK+1)*2*np.pi*(f1/fs)*irow )
|
|
78
|
+ A1 = np.exp(1j* np.tile( np.arange(1,nK+1),(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(len(t)),(nK,1)).T )
|
|
79
|
+ A2 = np.exp(1j* np.tile( np.arange(1,nK+1),(len(t), 1)) * 2*np.pi* (f1/fs) * np.tile(np.arange(len(t)),(nK,1)).T )
|
|
80
|
+ A = np.concatenate( (A1, A2), axis=1 )
|
153
|
81
|
|
154
|
|
- v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8)
|
155
|
82
|
|
|
83
|
+ v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8)
|
156
|
84
|
amp = np.abs(v[0][0:nK])
|
157
|
85
|
phase = np.angle(v[0][0:nK])
|
158
|
86
|
amp1 = np.abs(v[0][nK:2*nK])
|
|
@@ -165,17 +93,6 @@ def harmonicEuler2 ( f0, f1, sN, fs, nK, t ):
|
165
|
93
|
|
166
|
94
|
return sN-h
|
167
|
95
|
|
168
|
|
-def jacEuler( f0, sN, fs, nK, t):
|
169
|
|
- print("building Jacobian matrix ")
|
170
|
|
- J = np.zeros( (len(t), nK), dtype=np.complex64 )
|
171
|
|
- for it, tt in enumerate(t):
|
172
|
|
- for ik, k in enumerate( np.arange(0, nK) ):
|
173
|
|
- c = 1j*2.*np.pi*(ik+1.)*it
|
174
|
|
- J[it, ik] = c*np.exp( c*f0/fs ) / fs
|
175
|
|
- #plt.matshow(np.imag(J), aspect='auto')
|
176
|
|
- #plt.show()
|
177
|
|
- return J
|
178
|
|
-
|
179
|
96
|
def harmonicNorm ( f0, sN, fs, nK, t ):
|
180
|
97
|
return np.linalg.norm( harmonicEuler(f0, sN, fs, nK, t) )
|
181
|
98
|
|
|
@@ -186,15 +103,15 @@ def minHarmonic(f0, sN, fs, nK, t):
|
186
|
103
|
f02 = guessf0(sN, fs)
|
187
|
104
|
print("minHarmonic", f0, fs, nK, " guess=", f02)
|
188
|
105
|
# CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr
|
189
|
|
- res = minimize(harmonicNorm, np.array((f0)), args=(sN, fs, nK, t)) #, method='CG', jac=jacEuler) #, hess=None, bounds=None )
|
|
106
|
+ res = minimize(harmonicNorm, np.array((f0)), args=(sN, fs, nK, t), jac='2-point', method='BFGS') #, jac=jacEuler) #, hess=None, bounds=None )
|
190
|
107
|
print(res)
|
191
|
|
- return harmonicEuler(res.x[0], sN, fs, nK, t)
|
|
108
|
+ return harmonicEuler(res.x[0], sN, fs, nK, t)#[0]
|
192
|
109
|
|
193
|
110
|
def minHarmonic2(f1, f2, sN, fs, nK, t):
|
194
|
111
|
#f02 = guessf0(sN, fs)
|
195
|
112
|
#print("minHarmonic2", f0, fs, nK, " guess=", f02)
|
196
|
113
|
#methods with bounds, L-BFGS-B, TNC, SLSQP
|
197
|
|
- res = minimize( harmonic2Norm, np.array((f1,f2)), args=(sN, fs, nK, t), jac='2-point') #, bounds=((f1-1.,f1+1.0),(f2-1.0,f2+1.0)), method='TNC' )
|
|
114
|
+ res = minimize( harmonic2Norm, np.array((f1,f2)), args=(sN, fs, nK, t), jac='2-point', method='BFGS') #, bounds=((f1-1.,f1+1.0),(f2-1.0,f2+1.0)), method='TNC' )
|
198
|
115
|
print(res)
|
199
|
116
|
return harmonicEuler2(res.x[0], res.x[1], sN, fs, nK, t)
|
200
|
117
|
|
|
@@ -213,18 +130,20 @@ if __name__ == "__main__":
|
213
|
130
|
import matplotlib.pyplot as plt
|
214
|
131
|
|
215
|
132
|
f0 = 60 # Hz
|
216
|
|
- f1 = 61 # Hz
|
217
|
|
- delta = np.random.rand()
|
218
|
|
- delta2 = np.random.rand()
|
|
133
|
+ f1 = 60 # Hz
|
|
134
|
+ delta = np.random.rand() - .5
|
|
135
|
+ delta2 = np.random.rand() - .5
|
219
|
136
|
print("delta", delta)
|
|
137
|
+ print("delta2", delta2)
|
220
|
138
|
fs = 10000 # GMR
|
221
|
139
|
t = np.arange(0, 1, 1/fs)
|
222
|
|
- phi = np.random.rand()
|
223
|
|
- phi2 = np.random.rand()
|
|
140
|
+ phi = 2.*np.pi*np.random.rand() - np.pi
|
|
141
|
+ phi2 = 2.*np.pi*np.random.rand() - np.pi
|
|
142
|
+ print("phi", phi, phi2)
|
224
|
143
|
A = 1.0
|
225
|
|
- A2 = 0.0
|
|
144
|
+ A2 = 1.0
|
226
|
145
|
A3 = 1.0
|
227
|
|
- nK = 35
|
|
146
|
+ nK = 10
|
228
|
147
|
T2 = .200
|
229
|
148
|
sN = A *np.sin( ( 1*(delta +f0))*2*np.pi*t + phi ) + \
|
230
|
149
|
A2*np.sin( ( 1*(delta2 +f1))*2*np.pi*t + phi2 ) + \
|
|
@@ -240,11 +159,10 @@ if __name__ == "__main__":
|
240
|
159
|
|
241
|
160
|
# single freq
|
242
|
161
|
#h = harmonicEuler( f0, sN, fs, nK, t)
|
243
|
|
- h = minHarmonic( f0, sN, fs, nK, t)
|
|
162
|
+ #h = minHarmonic( f0, sN, fs, nK, t)
|
244
|
163
|
|
245
|
164
|
# two freqs
|
246
|
|
- #h = minHarmonic2( f0, f1, sN, fs, nK, t)
|
247
|
|
- #h = harmonic2( f0, f1, sN, fs, nK, t)
|
|
165
|
+ h = minHarmonic2( f0+1e-2, f1-1e-2, sN, fs, nK, t)
|
248
|
166
|
#h = harmonicEuler2( f0, f1, sN, fs, nK, t)
|
249
|
167
|
|
250
|
168
|
plt.figure()
|